PNNL Lab Homes

Sarah Widder Graham Parker Michael Baechler

May 10, 2012

Welcome to the Lab Homes...

Demonstrating tomorrow's efficient and smart technologies. Goal is to demonstrate an intelligent, responsive, energy efficient, and grid responsive home retrofit over a period of five to seven years which achieves 50% whole house energy savings.

Proudly Operated by Battelle Since 1965

Lab Homes Partners

- **Initial Partners**
 - DOE/BT/Building America-ARRA
 - DOE/BT/Windows and Envelope R&D
 - Bonneville Power Administration
 - DOE/OE
 - PNNL Facilities
 - Tri Cities Research District
 - City of Richland
 - Northwest Energy Works
 - WSU-Extension Energy Program
 - Battelle Memorial Institute (made land available)
- Funding from Building America, DOE Windows and Envelope R&D and BPA secured for FY12 to investigate highly insulating (R5) windows performance.

Sited Within the Tri-Cities Research District

Lab Homes Characteristics

- Specified to represent existing manufactured and stickbuilt housing
 - 3 BR/2BA 1493 ft² double-wide factory-built to HUD code
 - All-electric with 13 SEER/7.7 HSPF heat pump central HVAC + alternate Cadet fan wall heaters throughout
 - R-22 floors, R-11 walls & R-22 ceiling with composition roof
 - 195.7 ft² (13% of floor) window area
 - Wood (Smartpanel) siding
 - Incandescent lighting
 - Bath, kitchen, whole house exhaust fans
 - Carpet + vinyl flooring
 - Refrigerator/range
 - All electric
- Modifications include extensive metering and EV charging station

Pacific Northwest

Metering and Monitoring Characteristics

- Energy metering
 - 42 individually monitored breakers with ½ controllable and whole house
 - Itron smart billing meter
- Temperature and relative humidity
 - 15 room temperature thermocouples
 - 22 interior and exterior glass surface temperature thermocouples
 - 2 room relative humidity sensors
 - 2 mean radiant temperature sensors
- Water and Environment
 - Controllable water flows at fixtures
 - Solar insolation (pyronometer) inside home
 - Weather station (Lab Home B only)
- Data collection via Campbell Scientific data loggers
 - 1 minute, 15 minute, and hourly

Per Home!

Pacific Northwest NATIONAL LABORATORY

Occupancy Simulation

Simulation in accordance with Building America House Simulation Protocol (Hendron and Engebrecht, 2010)

60W light simulating adult occupant

Proudly Operated by Battelle Since 1965

Pacific North

NATIONAL LABORATORY

Null Testing

- Building construction comparison
 - Homes' air leakage (CFM air flow @50Pa) was within 6.2%
 - Homes' duct leakage (CFM air flow @50Pa) was within 2%, similar distribution performance
 - Heat pumps' performance similar ΔT across coil and air handler flow within 6%
 - Ventilation fans' flows within 2.5%
 - Thermal conductivity with IR camera shows settling of R-11 batt insulation in 2x6 wall cavity in both homes.

SUMMARY DATA							
	Baseline Home		Experimental Home				
	Average	+/- Error	Average	+/- Error			
	Value		Value				
CFM@25	491.6	30.4	492.8	30.5			
CFM@50	657.6	27.8	701.4	26.7			
ACH50	3.16	0.13	3.38	0.13			
ACH _n *	0.15	0.01	0.16	0.01			
*n = 21.5, based on single story home in zone 3, minimal shielding							

Null Testing

Whole House energy consumption comparison

Current Experiment

- Energy consumption and thermal comfort impact of highly insulating (R-5) windows
 - Jeld Wen triple pane, argon/krypton filled, vinyl frame, triple Low-e 366 coating on two inside panes
 - Compared to "typical" double pane, aluminum frame clear glass windows
 - No window treatments in either home

	Baseline Home		Highly Insulating		
	Wind	lows	Windows		
		Patio			
	Windows	Doors	Windows	Patio Doors	
U-Value	0.68	0.66	0.2	0.2	
SHGC	0.7	0.66	0.19	0.19	
VT	0.73	0.71	0.36	0.37	
AL	N/A	N/A	0.3	0.1	

Heating Season Results

Overall 7.6% +/- 1.9% heating season whole house savings

Sunny

VS.

Cloudy

Impact on thermal comfort

- Also examined window condensation potential and peak load impacts
- Results show significant energy savings and thermal comfort improvement
 - Also suggest R-5 windows will be very beneficial in summer cooling season due to low SHGC
- Heating season report to be finalized in June

Pacific Northwest NATIONAL LABORATORY

Future Research Agenda

- Initial study is focused on thermal performance of highly insulating (R5) windows (FY11/12).
- Future planned research will evaluate grid-smart appliances & smart electric vehicle charging stations.
- Future potential research may include ducted heat pump water heater, low-e storm windows, efficient enclosures, innovative HVAC technologies, non-intrusive load monitoring, and solar-thermal/PV.

The "multiple (5) outdoor refrigerator" experiment

For more info....

- Visit our website (under development):
 - http://labhomes.pnnl.gov/
- Email us:
 - labhomes@pnnl.gov

- Contact the research team:
 - Sarah Widder sarah.widder@pnnl.gov; 509-372-6396

S. DEPARTMENT O