Building America Program Review April 24-25, 2013

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Evaluation of Ducted GE Hybrid Heat Pump Water Heater in PNNL Lab Homes Sarah Widder

Energy Efficiency & Renewable Energy

Key PNNL Staff:

- Sarah Widder, Engineer, Principal Investigator
- Viraj Srivastava, Engineer, Demand Response Lead
- Vrushali Mendon, Engineer, Energy Modeling
- Nathan Bauman, Engineer, Metering

- Brady Peeks, Engineer/Manufactured Homes; Northwest Energy Works
- Jonathan Smith/Scot Shaffer, Engineers/Software & Hardware; GE Appliances
- Greg Sullivan, Principal/Metering & Analysis; Efficiency Solutions
- Valerie VanSchramm, CPS Energy

Co-Funders:

- Bonneville Power Administration, Emerging Technologies Program
- DOE, Office of Electricity

NEVILI

U.S. DEPARTMENT OF

ENERGY

Pacific

orthwest

BORATORY

ppliances

Lab Homes Partners

Energy Efficiency & Renewable Energy

U.S. DEPARTMENT OF

ENERGY

- Initial Partners
 - DOE/BT/Building America-ARRA
 - DOE/BT/Windows and Envelope R&D
 - Bonneville Power Administration
 - DOE/OE
 - PNNL Facilities
 - Tri Cities Research District
 - City of Richland
 - Northwest Energy Works
 - WSU-Extension Energy Program
 - Battelle Memorial Institute (made land available)

- Water heaters account for 18% of energy used in homes, or 1.8 Quads of energy use annually.¹
- Electric resistance water heaters make up 41% of all residential water heaters in the U.S.¹
- Heat pump water heaters (HPWH) can provide up to 62% energy savings over electric resistance water heaters.²
- 50% market penetration of HPWHs would result in savings of approximately 0.08 Quads annually.

¹ EIA; 2009 Residential Energy Consumption Survey

² Based on the DOE test procedure and comparison of an electric tank water heater (EF=0.90) versus a heat pump hot water heater (EF=2.35)

- Currently, market adoption and utility program incentives of HPWHs are limited due to lack of understanding and field data regarding:
 - Impact on space conditioning energy consumption and occupant comfort.
 - Impact on demand response programs.
 - Durability in harsh water conditions.

Primary Problem or Opportunity: The Role of This Research Project

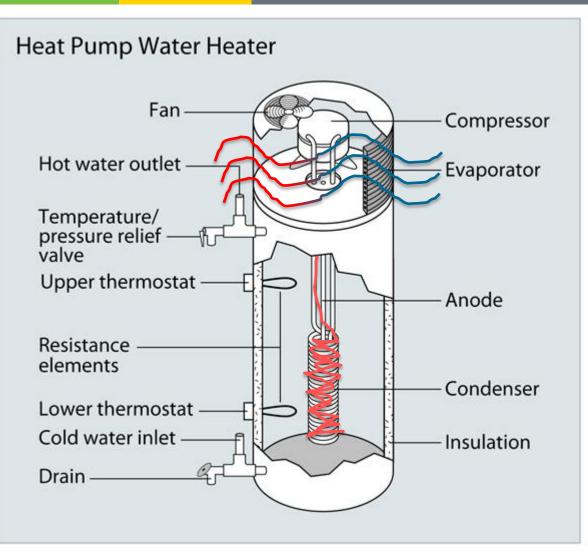
U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

 Evaluation of HPWHs in a highly controlled environment will help achieve market penetration of HPWHs through creation of a detailed data set that will comprehensively describe the performance of HPWHs installed in conditioned space in a number of configurations and as a demand response asset.

	Experiment	Whole House Power/Energy Use <i>[kWh or kW]</i>	HVAC Power/Energy Use <i>[kWh or kW]</i>	HPWH Power/Energy Use <i>[kWh or kW]</i>	Temperature/ RH at Several Interior Locations* [°F/%]
PNNL Lab Homes Experiments	Impact of exhaust ducting	Whole house energy savings	Incremental HVAC systems energy use/savings	Impact of ducting and exhaust fan on HPWH efficiency	Impact of exhaust ducting on occupant comfort
	Impact of supply and exhaust ducting	Whole house energy savings	Incremental HVAC system energy use/savings	Impact of supply ducting and supply air temp on HPWH efficiency	Impact of supply and exhaust ducting on occupant comfort
	Demand response characteristics	Whole house power reduction during DR events	N/A	HPWH power reduction during DR events	*Tank temperature decrease during DR events

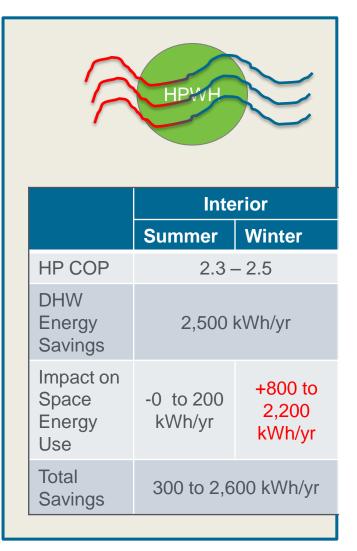
• This information is necessary to support regional efficiency and manufactured housing programs and encourage more widespread adoption of HPWH nationally.


Overview of Technology: HPWHs

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

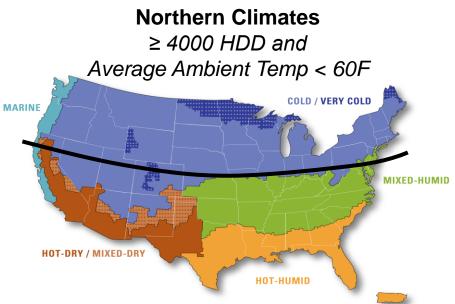
- HPWHs work by transferring heat from the ambient air to the water in the tank.
- This process provides more energy to the water than it uses in electricity.
 - Tested Energy Factors (EF) for HPWHs available on the market range from 1.7 to 2.4.³


³ Ecotope: 2011

Source: U.S. DOE; energysavers.gov

Overview of Technology: HPWHs in Conditioned Space

- HPWHs installed in interior space will use conditioned indoor air to heat water.
 - Benefit during cooling
 - Penalty during heating
 - May affect comfort
- Performance of HPWHs installed outside will have reduced performance.
 - Most HPWH compressors do not operate below 40-45 F.³



U.S. DEPARTMENT OF

Overview of Technology: HPWHs with Exhaust Ducting

- ENERGY **Renewable Energy** Modeling has found ducting exhaust to effectively mitigate
- some adverse space conditioning impacts in Northern Climates.
 - Resulted in NEEA Northern Climate HPWH Specification requiring exhaust ducting for Tier 2 products.

	Minimum Northern Climate EF*	Minimum "Northern Climate" Features	Minimum supported installation locations	Sound levels**
Tier 1	1.8	ENERGY STAR compliance	Semi-conditionedUnconditioned	dBA < 65
Tier 2	2.0	 Tier 1 plus: Minimal use of electric heating elements Freeze protection Exhaust ducting option Compressor shut- down/notification 10 year Warranty Condensate Mgmt 	 Conditioned Semi-conditioned Unconditioned 	dBA < 60
Tier 3	2.4	 Tier 2 plus: Intake ducting option Air Filter Mgmt 	 Conditioned Semi-conditioned Unconditioned 	dBA < 55

U.S. DEPARTMENT OF

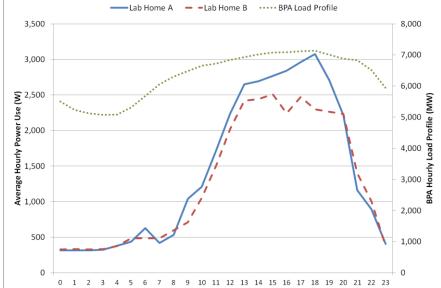
Energy Efficiency &

* see Appendix A for details on definition and calculation method.

** see Appendix D for details on measurement method.

Requires data to verify model assumptions and findings.

Overview of Technology: Supply Ducting


U.S. DEPARTMENT OF

- Newton's 2nd Law
 - Reduced impact with exhaust ducting relies on buffering from semi-conditioned spaces.
 - Will result in depressurization with respect to outside.
 - This may be a problem for small homes (e.g., manufactured homes) and homes in high radon areas.
- NEEA Tier 3 Spec requires optional supply ducting and Northwest Energy Efficient Manufactured Home (NEEM) Specification may require similar.
 - No products are currently available with this configuration.
 - Ducting directly from outside will result in decreased HPWH performance.
- Need to verify performance of HPWH with supply ducting to crawlspace.

Overview of Technology: HPWH Demand Response Characteristics

- Many utilities currently employ electric resistance water heaters to shave peak load by turning off the water heater (INC).
- PNNL has also demonstrated the potential of using HPWHs to increase load (DEC) for areas with high renewable penetration and to provide additional balancing and ancillary (voltage regulation) services.
- Need to understand demand response characteristics of HPWHs as compared to electric resistance water heaters, including "dispatchable kW," "thermal capacity," and "response time."

Overview of Technology: HPWH Durability in Hard Water

- Utilities and consumers are concerned about lifetime of HPWHs in areas with hard water
 - HPWHs typically have anode rods installed to neutralize hard water and delay tank corrosion.
 - Information is not widely available for what ranges of hard water conditions anode rods are designed for or how they affect HPWH lifetime and cost effectiveness.

GE Hybrid Water Heater Warranty.

All warranty service provided by our Authorized Servicer Network. To schedule service, call 888.4GE.HEWH (888.443.4394). Please have serial number and model number available when calling for service.

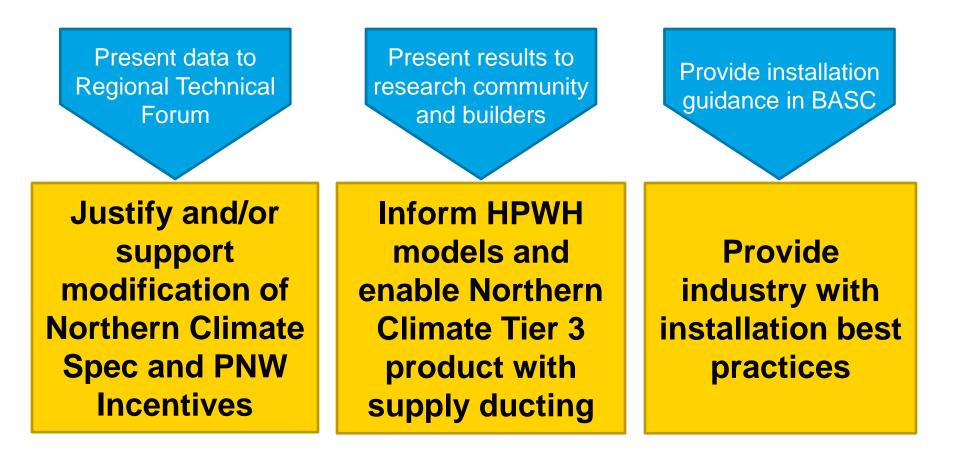
Staple your receipt here. Proof of the original purchase date is needed to obtain service under the warranty.

What Is Not Covered:

- Service trips to your home to teach you how to use the product.
- Improper installation, delivery or maintenance.
- Failure of the product if it is abused, misused, altered, used commercially or used for other than the intended purpose.
- Use of this product where water is microbiologically unsafe or of unknown quality, without adequate disinfection before or after the system.
- Replacement of house fuses or resetting of circuit breakers.
- Damage to the product caused by accident, lightning, fire, flood or acts of God.
- Incidental or consequential damage caused by possible defects with this appliance, its installation or repair.
- Product not accessible to provide required service.
- If product removed from original installation location.

- Damages, malfunctions or failure caused by the use of repair service not approved by GE.
- Damages, malfunctions or failure caused by the use of unapproved parts or components.
- Damages, malfunctions or failure caused by operating the heat pump water heater with the anode rod removed.
- Damages, malfunctions or failure resulting from operating the heat pump with an empty or partially empty tank.
- Damages, malfunctions or failure caused by subjecting the tank to pressure greater than those shown on the rating label.
- Damages, malfunctions or failure caused by operating the heat pump water heater with electrical voltage exceeding those shown on the rating label.
- Water heater failure due to the water heater being operated in a corrosive atmosphere.

EXCLUSION OF IMPLIED WARRANTIES—Your sole and exclusive remedy is product repair as provided in this Limited Warranty. Any implied warranties, including the implied warranties of merchantability or fitness for a particular purpose, are limited to one year or the shortest period allowed by law.


- Clear guidance on the optimal installation of HPWHs in all climates and configurations.
- Adoption of HPWHs as a fully-approved measure in BPA service territories and into other utility incentive programs, particularly in cold climates and areas with hard water.
- Consideration of HPWHs for High-Performance Manufactured Homes (HPMHs) in the Pacific Northwest that go beyond the current Northwest Energy Efficiency Manufactured Home (NEEM) specifications.
- Adoption of HPWHs into utility demand response product portfolios.
- HPWHs are installed as "standard" technology for electrically-heated homes across the nation and contribute to 50% energy saving solutions in new and existing homes.

Business Plan Linking Research to Industry/Market

Energy Efficiency & Renewable Energy

Research results will:

Key Metrics for Each Year of Funding Anticipated

Energy Efficiency & Renewable Energy

2013

- Verification and documentation of energy savings, load-balancing potential, and performance of:
 - energy and occupant comfort impacts of new HPWHs without ducting, with exhaust ducting, and with supply and exhaust ducting,
 - HPWH demand response capabilities, and
 - HPWH performance in hard water conditions.
- Development of specifications for HPWH appropriate for adoption into utility incentive programs, particularly in cold climates and areas with hard water.
- Production of data set to inform HPWH model calibrations.

Beyond

- Development of climate- and housing type-specific guidance for HPWH installation to maximize savings in all climate zones and configurations.
- Collaboration with manufacturers to develop market-ready supply ducted units, as appropriate.

2011 Primary Accomplishments

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

- Sited and commissioned PNNL Lab Homes
- Held **Road-mapping** Workshop

PNNL Lab Homes Ribbon Cutting and Stakeholder Workshop Tuesday, November 15, 2011 10:00 am - 4:00 pm Pacific Northwest National Laboratory - Richland, Washington **Preliminary Agenda** 10:00 - 10:30 a.m. **Ribbon Cutting Ceremonies** Remarks by PNNL Lab Management and Sponsors 10:30 - 12:00 p.m Lab Tours 12:00 - 1:00 p.m. Lunch - ETB/Columbia River Room Stakeholder Workshop - ETB/Columbia River Room 1:00 - 4:00 p.m.

Objective

The objective of the workshop is to obtain input from stakeholders on the types of experiments that should be conducted in FY13 and beyond and to dentify possible funding sources. With this input a test plan will be prepared that, over a five year period, researches retroffs solution packages for moderate to cold climates that can be cost effectively deployed in the Pacific Northwest to save 50 percent of the energy needs of a typical home while enhancing the comfort and indoor air quality. The retroffs strategies would also lower the pack elemands on the grid.

Sponsors

DOE/BT/Building America • DOE/BT/Windows and Envelope R&D Bonneville Power Administration • DOE/Office of Electricity Battelle Memorial Institute • PNNL Facilities • City of Richland Tri Cities Research District • GE Appliances

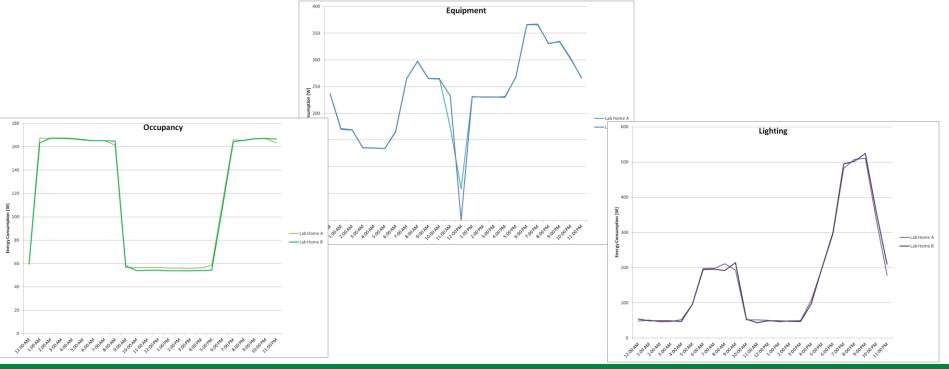
Pacific Northwest Please R.S.V.P. to rsvp@pnnl.gov or (509) 372-6888 no later than Friday, November 11, 2011.

Proudly Operated by Battelle Since 1965

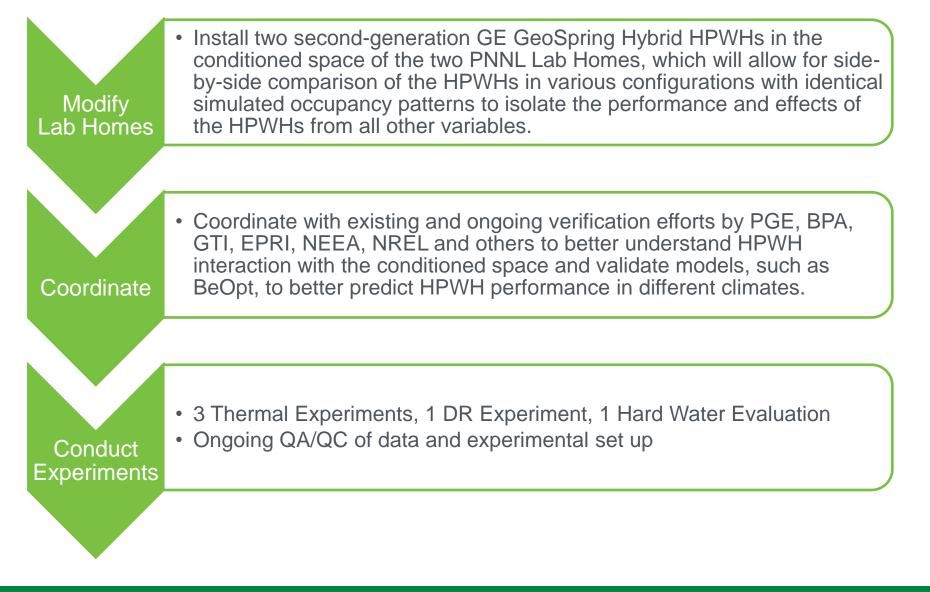
2012 Primary Accomplishments

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy


Highly Insulating Windows Experiment

- Side-by-side assessment in the PNNL Lab Homes demonstrated that highly insulating windows:
 - Save approximately 13% on whole house energy use
 - Reduce peak demand 25% in the summer
 - Improve thermal comfort through more consistent interior temperatures and higher surface glass temperatures
 - May decrease the risk of condensation and mold issues in regions with high humidity
 - Still have long PBPs from 23 to 55 years.
- Cost effectiveness could be improved through reduced costs, valuation of non-energy benefits, and accounting for system-level savings (e.g., downsized HVAC systems and optimized duct design).


Research Adjustments Based on Past Findings

- Despite budget and schedule implications of changing terms of cooperation with GE, the experimental plan and scope have not changed.
- It is important to check data daily to ensure quality and make quick adjustments.

2013 Strategy to Achieve Research Goals: Steps

Technical Underpinnings Targeted: #1 - #3: Thermal Experiments

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Experiment	Lab Home A Configuration	Lab Home B Configuration	Purpose of Experiment
#1: HP vs. ER	50-gallon electric resistance ⁵	50-gallon GE Hybrid HPWH	Characterize performance and interaction with HVAC for HPWH as compared to ER baseline
#2: Ducted vs. Unducted	50-gallon GE Hybrid HPWH with no ducting	50-gallon GE Hybrid HPWH with exhaust ducting	Characterize performance of ducted HPWH vs. identical unducted HPWH to isolate the impact of ducting on whole-house and HVAC energy consumption, thermal comfort, and HPWH performance
#3: Fully Ducted vs. Unducted	50-gallon GE Hybrid HPWH with no ducting	50-gallon GE Hybrid HPWH with supply ducting (from crawl) and exhaust ducting	Characterize interaction of HPWH on infiltration and house pressurization for fully ducted and unducted scenarios and impact using tempered crawlspace air as supply air

⁵ Electric resistance baseline will be GE Hybrid HPWH in ER only mode.

Technical Underpinnings Targeted #4: Demand Response Experiments

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

 Evaluate demand response characteristics of this smartgrid-enabled HPWH compared to electric resistance baseline during variety of demand response events:

Exp Name	Experiment Description	Time	Duration	Purpose of Experiment
AM Load Shift	Turn off heating elements	7:00 AM	3 hours	Evaluate HPWH load shedding potential (dispatchable kW and thermal capacity) as compared to electric resistance baseline to manage peak load
PM Load Shift	Turn off heating elements	2:00 PM	3 hours	Evaluate HPWH load shedding potential (dispatchable kW and thermal capacity) as compared to electric resistance baseline to manage peak load
EVE Load Shift	Turn off heating elements	6:00 PM	3 hours	Evaluate HPWH load shedding potential (dispatchable kW and thermal capacity) as compared to electric resistance baseline to manage peak load
INC Balancing	Turn off heating elements	2:00 AM; 8:00 AM; 2:00 PM; 8:00 PM	30 minutes	Evaluate HPWH potential to provide balancing reserves for (dispatchable kW and thermal capacity) as compared to electric resistance baseline
DEC Balancing	Set tank temp to 135 F	2:00 AM	30 minutes	
DEC Balancing V2	Turn on ER in Lab Home A; HP only in Lab Home B	2:00 AM	30 minutes	N/A; HPWHs should stay in appropriate mode throughout test (Lab Home A = ER; Lab Home B = HP)

Technical Underpinnings Targeted #5: Hard Water Experiments

U.S. DEPARTMENT OF

- PNNL will work with GE and CPS Energy in San Antonio, Texas, to evaluate HPWH performance and durability in hard water conditions. This research question is of particular interest to CPS Energy, who would like to incentivize HPWHs due to their ideal climate but is concerned about the effect of the local hard water on the units.
 - <u>Phase I</u>: Literature review and manufacturer interviews to better characterize problem and current building science knowledge.
 - <u>Phase II:</u> Conduct any necessary additional data collection to fill identified gaps in understanding. This may include deploying HPWHs to San Antonio (contingent on outyear funding).

U.S. DEPARTMENT OF

Thermal Experiments:

- Quantification of the tradeoffs between space conditioning impact and HPWH performance and identification of the optimal installation of HPWHs in conditioned space, which minimizes whole house energy use and does not adversely affect occupant comfort.
 - Whole house, HVAC, DHW energy use, and thermal comfort impacts in each configuration.

Hard Water Evaluation:

 Characterization of current understanding of HPWH longevity in regions with hard water.

Demand Response Experiments:

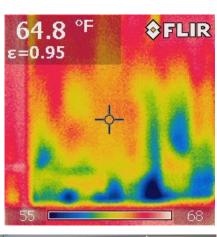
- Evaluation of HPWH demand response characteristics for load shedding and balancing reserve events.
 - Dispatchable kW, inherent capacity reduction, response time and duration, delivered hot water temp.

Energy Efficiency & Renewable Energy

Questions?

24 | Building America

eere.energy.gov

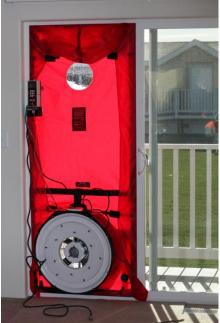

Energy Efficiency & Renewable Energy

Back Up Slides

Null Testing

- Building construction comparison
 - Homes' air leakage (CFM air flow @50Pa) was within 5%
 - Homes' duct leakage (CFM air flow @50Pa) was within 2%, similar distribution performance
 - Heat pumps' performance similar ∆T across coil and air handler flow within 6%
 - Ventilation fans' flows within 2.5%
 - Thermal conductivity with IR camera shows settling of R-11 batt insulation in 2x6 wall cavity in both homes.

SUMMARY DATA						
	Baseline H	lome	Experimenta	al Home		
	Average +/- Error		Average	+/- Error		
	Value		Value			
CFM@50	783 27		824	27		
ACH50	3.77 0.1285		3.965	0.13		
ACH _n [*] 0.18 0.01 0.18 0.						
*n = 21.5, based or	n single story ho	ome in zone	e 3, minimal shie	elding		

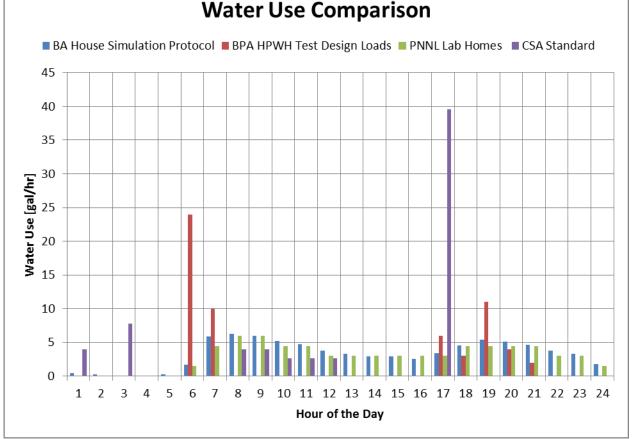


Energy Efficiency &

Renewable Energy

U.S. DEPARTMENT OF

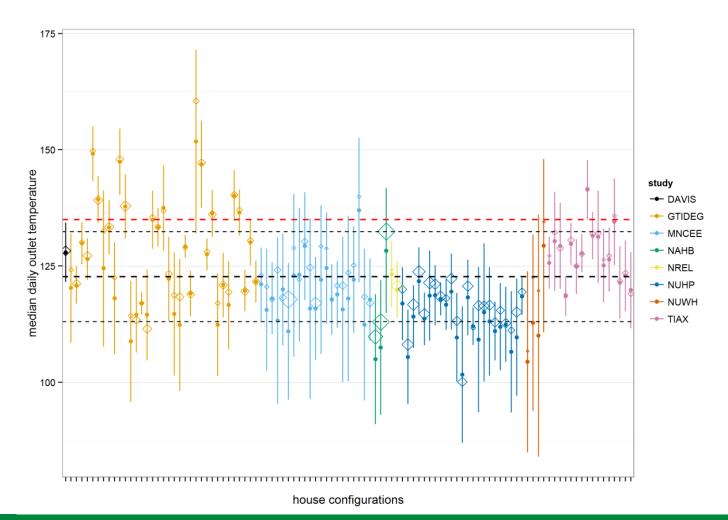
ENERGY



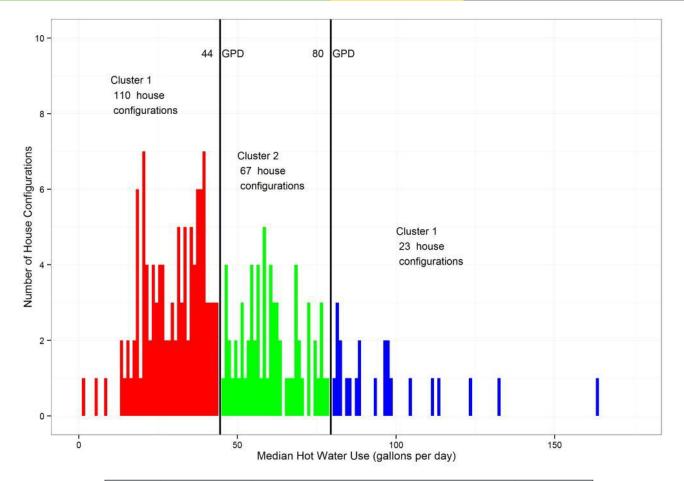
Hot Water Draw Profile

- LBNL Metaanalysis¹ of 159 homes found:
 - 122.7 F average tank set point
 - Majority of draws between 1 and 1.5 gpm
 - Majority of draws
 between 1 and 4
 minutes in length
 - "High," "medium," and "low" daily water draws of 29.38, 60.52, 98.04 gal/day

¹ Lutz and Melody; 2012



Profile	Daily Hot Water Use [gal/day]
Building America House Simulation Protocol	78.51 (4 people)
BPA Evaluation	81 gal/day (3 people)
Canadian Test Standard	67.2 gal/day
PNNL Lab Homes	69.28 (3 people)



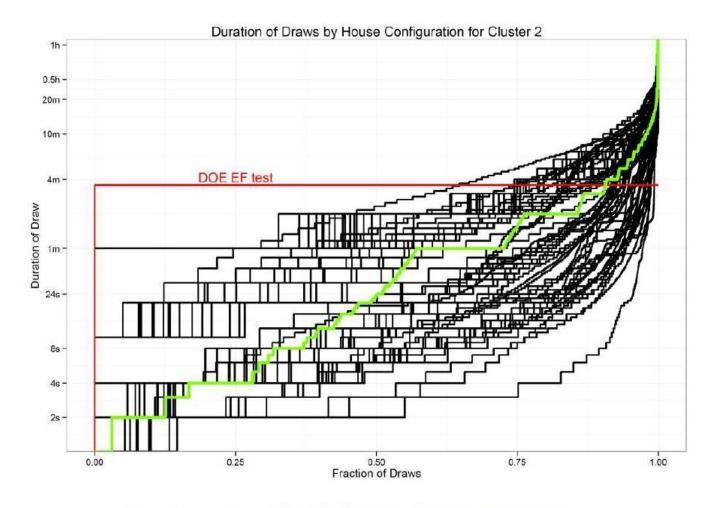
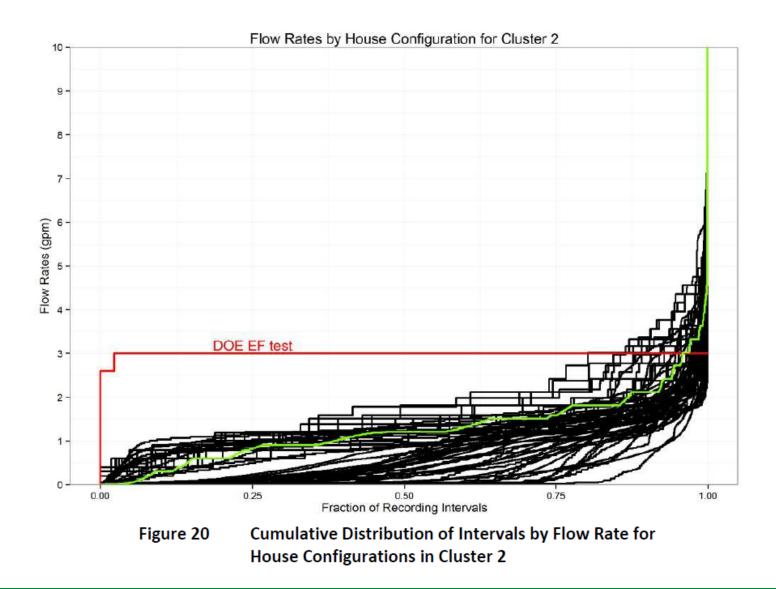
Energy Efficiency & Renewable Energy

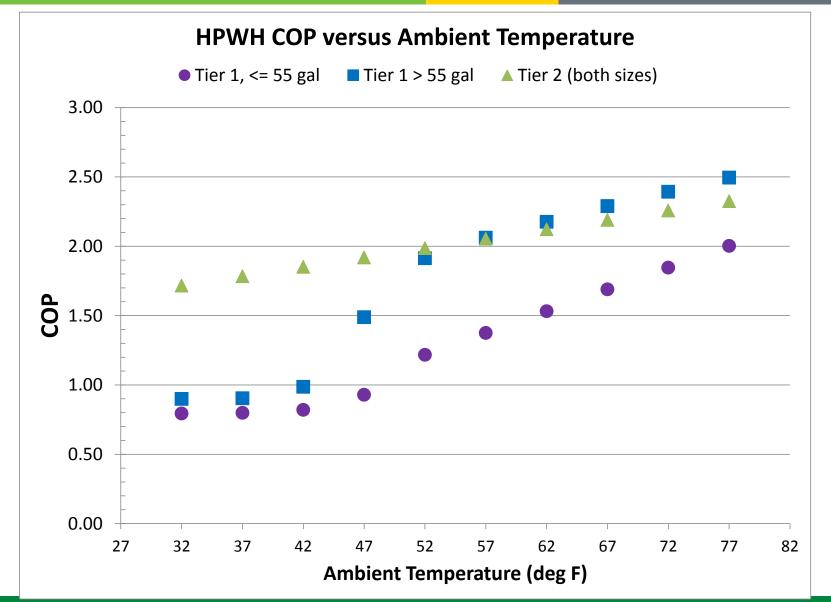
• Median Daily Outlet Temp = 122.7F

	House	Median Daily Volume (gallons)			Median Daily Volume (gallons)		Average
Cluster	Configurations	Minimum	Average	Maximum	Daily Draws		
1	110	1.52	29.38	43.23	45.22		
2	67	45.25	60.52	78.66	66.48		
3	23	80.74	98.04	163.21	86.37		

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy


Figure 14 Cumulative Distribution of Draws by Duration for House Configurations in Cluster 2

Prior Lab Testing (Ecotope, 2011)

U.S. DEPARTMENT OF

- Impact on house heating + cooling system depends on climate, exhaust airflow, and HVAC system type
- Combining DHW energy savings with heating + cooling impact produces the overall energy savings estimate
- 5 scenarios in 4 climates considered on next slide:
 - Interior non-ducted (0 cfm flow to outside)
 - 4 levels of exhaust ducting to outside
 - 150, 200, 250, and 300 cfm

U.S. D	U.S. DEPARTMENT OF				
EN	Ε	RGY			

Zonal Resistance Heat (kWh/yr)						
CFM	PNW	HZ1	HZ2	HZ3		
300	-1283	-1252	-1514	-1764		
250	-1029	-1003	-1222	-1431		
200	-839	-817	-1006	-1184		
150	-664	-646	-799	-943		
0	-1415	-1415	-1479	-1597		

Electri	Electric Resistance Furnace (kWh/yr)						
CFM	PNW	HZ1	HZ2	HZ3			
300	-1464	-1428	-1741	-2036			
250	-1173	-1143	-1399	-1641			
200	-953	-927	-1146	-1349			
150	-751	-730	-906	-1072			
0	-1608	-1606	-1688	-1830			

Не	Heat Pump HSPF 8.5 (kWh/yr)						
CFM	PNW	HZ1	HZ2	HZ3			
300	-790	-731	-1142	-1542			
250	-617	-572	-888	-1195			
200	-491	-454	-701	-961			
150	-379	-351	-539	-741			
0	-609	-590	-731	-892			

Gas	Gas Furnace AFUE 90 (therms/yr)						
CFM	PNW	HZ1	HZ2	HZ3			
300	-68	-66	-83	-98			
250	-54	-53	-66	-78			
200	-46	-44	-56	-67			
150	-35	-33	-42	-51			
0	-62	-62	-64	-68			

- CFM is airflow ducted to outside ("0" corresponds to no ducting)
- Negative values are a heating system debit

- None for houses without cooling system (Zonal Resistance and Electric Furnace)
- Cooling savings for ducted installations nearly negligible but not so for nonducted ones

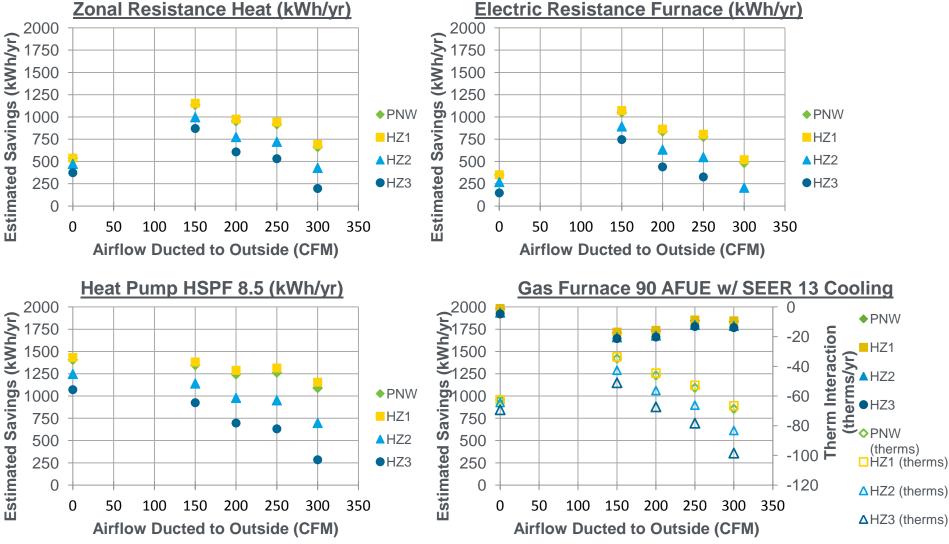
Не	at Pump	SEER 1	3 (kWh/	/yr)		Gas Furnace w A/C: SEER 13 (kW						
CFM	PNW	HZ1	HZ2	HZ3		CFM	PNW	HZ1	HZ2	HZ		
300	20	20	20	20		300	19	19	19	1		
250	18	18	18	3 18		250	18	18	18	1		
200	17	17	17	17		200	17	17	17	1		
150	16	16	16	16		150	16	16	16	1		
0	153	153	153	153		0	152	152	152	15		

- CFM is airflow ducted to outside ("0" corresponds to no ducting)
- Positive values are a cooling system benefit

Analysis Outputs: Combined Savings Tables

U.S. DEPARTMENT OF

Zonal Resistance Heat (kWh/yr)										
CFM	PNW	HZ1	HZ2	HZ3						
300	662	692	428	197						
250	917	942	722	531						
200	994	1016	825	666						
150	1145	1163	1009	884						
0	538	537	474	374						


Electric Resistance Furnace (kWh/yr)										
CFM	PNW	HZ1	HZ2	HZ3						
300	484	520	206	-70						
250	776	806	549	327						
200	884	909	690	506						
150	1063	1083	907	761						
0	349	350	270	147						

Heat Pump HSPF 8.5 (kWh/yr)										
CFM	PNW	HZ1	HZ2	HZ3						
300	1090	1155	1155 698							
250	1263	1314	952	632						
200	1267	1311	1014	744						
150	1352	1387	1149	935						
0	1407	1433	1248	1071						

Gas Furnace AFUE 90 (kWh/yr)											
CFM	PNW	HZ1	HZ2	HZ3							
300	1829	1837	1778	1756							
250	1839	1847	1791	1771							
200	1726	1734	1675	1657							
150	1706	1714	1656	1640							
0	1970	1976	1930	1914							

PNW Modeling: DHW Savings with Combined Interaction

U.S. DEPARTMENT OF

Product details

	DR Product 1 Within-hour load decrease for non-	DR Product 2 Within-hour load increase for non-	DR Product 3 Heavy load hour to light load hour shift	DR Product 4 Load decrease for capacity/peak shifting
	spinning balancing reserves (INC)	spinning balancing reserves (DEC)	for oversupply	with BPA and utility dispatch
Primary Use	Additional balancing reserves for wind integration	Additional balancing reserves for wind integration	Oversupply mitigation	Transmission and distribution congestion management and deferrals, utility peak avoidance
Dispatched By	BPA	BPA	BPA	Contractually separate dispatch by BPA and participating utility
Expected Beneficiaries	Variable energy resources (VERs)	Variable energy resources (VERs)	Variable energy resources (VERs)	BPA Transmission, participating utility
Dispatch Period	10 minutes	10 minutes	60 minutes	Within-hour (BPA) Day-ahead (utility)
Seasonality	Year-round	Year-round	March - July	Year-round
Duration	Up to 90 minutes	Up to 90 minutes	Up to 6 hours	Up to 4 hours
Maximum Hours Annual Usage	300	180	480	300
Expected Cost FY13-15	\$6-7 kW/month	\$1-3 kW/month (as add-on to DR Product 1)	\$4-5 kW/month	\$4-5 kW/month
Expected Cost at Scale	\$3-5 kW/month	TBD - no current full-scale programs	TBD - no current full-scale programs	\$3-5 kW/month
Current Comparative Cost	VERBS rate (FBS-based): \$7.68 kW/month	VERBS rate (FBS-based): \$2.07 kW/month	OMP cost estimate: \$40-50 MW/hour	Demand charge for LF customers: \$9.62 kW/month
Future Comparative Cost	Combustion gas turbine: \$17.63 kW/month	TBD - no current market-ready alternative	TBD - no current market-ready alternative	Combustion gas turbine: \$17.63 kW/month
Estimated expected BPA Benefit	100%	100%	TBD - based on project-specific expected benefits analysis	TBD - based on project-specific expected benefits analysis
Estimated expected Utility Benefit	0%	0%	TBD - based on project-specific expected benefits analysis	TBD - based on project-specific expected benefits analysis

Notes:

- Cost estimates based on benchmarking and market research with DR providers
- Initial cost allocation estimates based on assessment of each product by DR Cost Allocation Team comprised of Power and Transmission Rates staff
- Actual cost allocation for each project will be determined by analyzing its expected benefits; if expected benefits are not clear upfront, costs will be
 allocated based on principles determined by the IRTP Cost Allocation Team and approved by the ASF

Task		Description	Task Alias	Subtask Alias	Start	Finish	Days
1		Project Management Plan (PMP)		PMP	12/1/2012	1/4/2013	34
2	A	Modify Lab Homes and Install Equipment	Baseline	Install	1/4/2013	2/24/2013	51
2	В	Baseline Testing		Baseline	2/24/2013	3/12/2013	16
3	В	Baseline Testing		Baseline	3/31/2013	4/20/2013	20
3	A	Heating Season Exp #1 (ER v. HPWH)	Heating Exp.	Exp #1	11/1/2013	11/9/2013	8
						11/30/201	
3	B	Heating Season Exp #2 (Exhaust Duct)		Exp #2	11/9/2013	3	21
					11/30/201	12/21/201	
4		Heating Season Exp #3 (Supply&Exhaust)		Exp #3	3	3	21
5		Demand Response	DR	Demand Response	5/1/2013	5/31/2013	30
6	A	Cooling Season Exp #1 (ER v. HPWH)	Cooling Exp.	Exp #1	6/1/2013	6/20/2013	19
6	В	Cooling Season Exp #2 (Exhaust Duct)		Exp #2	6/21/2013	7/9/2013	18
7	A	Cooling Season Exp #3 (Supply&Exhaust)		Exp #3	7/10/2013	7/30/2013	20
						10/31/201	
7	B	Sensitivity Experiments		Additional Exp	9/1/2013	3	60
					12/21/201		
8		Final Report	Final Report	Dev. Approach	3	1/31/2014	41
9		TI Council Meeting Presentation		TI Council Mtg	1/14/2014	1/31/2014	17

PNNL HPWH DR Testing Schedule

	. <u> </u>	·			,,	·			l		<u> </u>	1	<u> </u>	<u> </u>	Mode to Return to after
Dav	Date	Exp	Signal 1	Time	Duration	Signal 2	Time	Duration	Signal 3	Time	Duration	Signal 4	Time	Duration	
Jay			Turn off heating	7:00		-181101 E	+	54.4001	5.5.101.5	1 me	Saration			Daracion	Lab Home A = ER; Lab Home B
1			elements			N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	= HP
			Turn off heating	7:00											Lab Home A = ER; Lab Home B
2			elements			N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	= HP
			Turn off heating	7:00											Lab Home A = ER; Lab Home B
২			elements			N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A		= HP
			Turn off heating	2:00			1		,	1.1/1			,,,		Lab Home A = ER; Lab Home B
4			elements			N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	= HP
			Turn off heating	2:00			1			1			1		Lab Home A = ER; Lab Home B
5			elements			N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A		= HP
			Turn off heating	2:00										1 '	Lab Home A = ER; Lab Home B
6			elements			N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	= HP
			Turn off heating	6:00											Lab Home A = ER; Lab Home B
7			elements			N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	= HP
		EVE Load	Turn off heating	6:00						<u> </u>	-			-	Lab Home A = ER; Lab Home B
8	TBD	Shift	elements			N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	= HP
		EVE Load	Turn off heating	6:00											Lab Home A = ER; Lab Home B
9		Shift	elements											N/A	= HP
			Turn off heating	2:00		Turn off heating	8:00		Turn off heating	2:00		Turn off heating	8:00		Lab Home A = ER; Lab Home B
10			elements			elements			elements			elements			= HP
			Turn off heating	2:00		Turn off heating	8:00		Turn off heating	2:00		Turn off heating	8:00		Lab Home A = ER; Lab Home B
11		-	elements			elements			elements	-		elements			= HP
			Turn off heating	2:00	I I	Turn off heating	8:00		Turn off heating	2:00		Turn off heating	8:00		Lab Home A = ER; Lab Home B
12			elements			elements			elements			elements			= HP
		DEC		2:00		Turn off heating	8:00		Turn off heating	2:00		Turn off heating	8:00		
13			Set tank temp to 135 F			elements			elements			elements		1 minutes	
		DEC		2:00		Turn off heating	8:00		Turn off heating	2:00		Turn off heating	8:00		N/A; HPWHs should stay in
14			Set tank temp to 135 F			elements			elements	_		elements	-		appropraite mode throughout
		DEC		2:00		Turn off heating	8:00		Turn off heating	2:00		Turn off heating	8:00		test (Lab Home A = ER; Lab
15	TBD		Set tank temp to 135 F	AM	minutes	elements	AM	minutes	elements	PM	1 minutes	elements	PN	1 minutes	Home B = HP)
	۱ ۱		Turn on ER in Lab		1					1 _			_		
			Home A; HP only in	2:00	1 1	Turn off heating	8:00		Turn off heating	2:00		Turn off heating	8:00		
16	TBD	Balancing V2		AM	minutes	elements	AM	minutes	elements	PM	1 minutes	elements	PN.	1 minutes	-
	۱ I		Turn on ER in Lab			ļ., ., .	1 1								
			Home A; HP only in	2:00		Turn off heating	8:00		Turn off heating	2:00		Turn off heating	8:00		
17	TBD	Balancing V2		AM	minutes	elements		minutes	elements	+ PM.	1 minutes	elements			N/A; HPWHs should stay in
	l i		Turn on ER in Lab		20	Turn off bases			Turn off barrie		20	Turn off har at			appropraite mode throughout
			Home A; HP only in	2:00		Turn off heating	8:00		Turn off heating	2:00		Turn off heating	8:00		test (Lab Home A = ER; Lab
18	TBD	Balancing V2	чьар ногле в	AM	minutes	elements		minutes	elements	I PW	1 minutes	elements	I NN	1 minutes	Home B = HP)