

Demonstration of 2nd Generation Ducted GE "Brillion" Hybrid Water Heater in the PNNL Lab Homes

2013 ACEEE Hot Water Forum

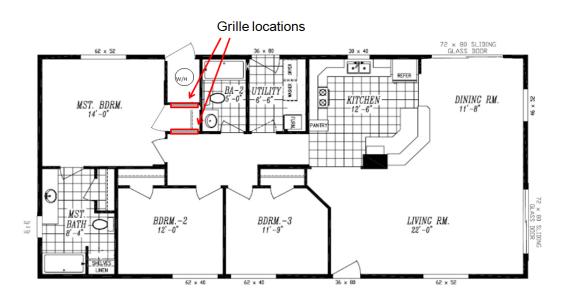
Sarah Widder
Research Engineer
Pacific Northwest National Laboratory

- Project Sponsors: DOE Building America Program/Bonneville Power Administration
- Contractor: PNNL
- Principal Investigators: Graham Parker/Sarah Widder, PNNL
- Other Project Stakeholders: GE Appliances**; Northwest Energy Works (NEW)**; Regional Technical Forum (RTF); Regional/National Utilities & Efficiency Advocates; PNW Manufactured Homes Industry; Appliance, Plumbing, HVAC Industry; Residential Customers

^{**}Cost sharing partners.

- Evaluate the performance and demand response (DR) of the Gen II GE GeoSpring™ HPWH under a number of operating configurations in Lab Homes.
 - Exhaust ducted HPWH vs. standard WH & unducted HPWH (winter/summer).
 - Exhaust & supply ducted HPWH vs. unducted HPWH (winter/summer).
 - DR characteristics of unducted 50 gal HPWH vs. electric resistance 50 gal WH.
- Experiments conducted with controlled & measured variables under identical simulated occupancy in each home.

HPWH DR Project Background



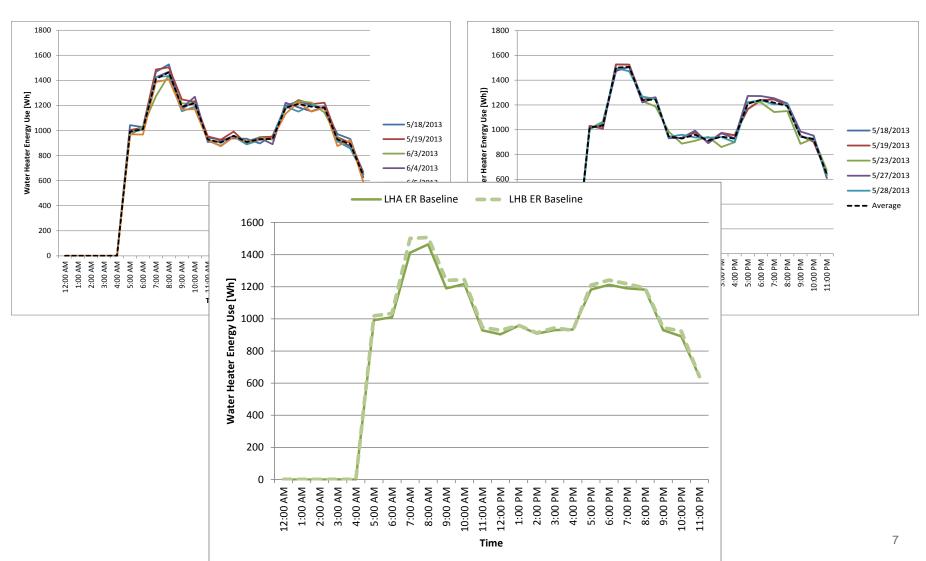
- Previous modeling efforts at PNNL and elsewhere have demonstrated the potential of electric resistance water heaters to provide a variety of grid services (peak curtailment, regulation, and voltage/frequency response) in the PNW and nationwide (Lu et al, 2011; Diao et al 2012)
- The demand response characteristics of HPWH are not currently well understood
- There is concern for some utilities (and recognition by DOE) that HPWH may conflict with DR program goals

HPWH Experimental Design

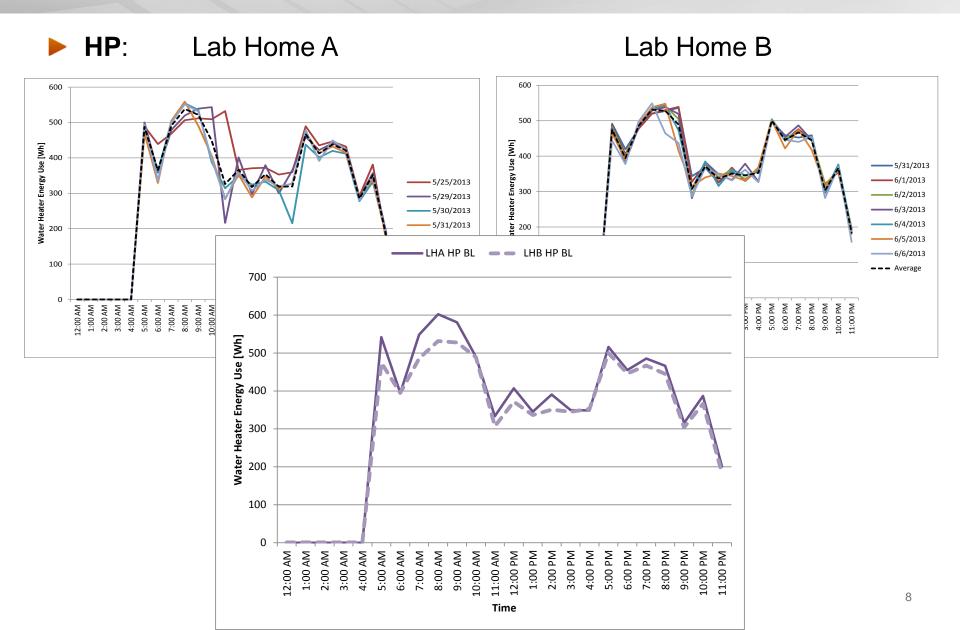
- Two side-by-side GE Brillion-enabled HPWH
 - One operated in Heat Pump mode with no ducting or back-up electric resistance elements
 - One operated in Standard mode with electric resistance elements only
- Installed in Lab Homes conditioned space

HPWH DR Project Specifics

Experiment	Experiment Description	Time	Duration	Purpose of Experiment
A.M. Peak Curtailment	Turn off heating elements	7:00 a.m.	3 hours	Evaluate HPWH load shedding potential (dispatchable kW and thermal capacity) as compared to electric resistance baseline to manage peak load
P.M. Peak Curtailment	Turn off heating elements	2:00 p.m.	3 hours	Evaluate HPWH load shedding potential (dispatchable kW and thermal capacity) as compared to electric resistance baseline to manage peak load
EVE Peak Curtailment	Turn off heating elements	6:00 p.m.	3 hours	Evaluate HPWH load shedding potential (dispatchable kW and thermal capacity) as compared to electric resistance baseline to manage peak load
INC Balancing	Turn off heating elements	2:00 a.m. 8:00 a.m. 2:00 p.m. 8:00 p.m.	1 hour	Evaluate HPWH potential to provide balancing reserves for dispatchable kW as compared to electric resistance baseline
DEC Balancing	Set tank temp to 135°F	2:00 a.m. 8:00 a.m. 2:00 p.m. 8:00 p.m.	1 hour	Evaluate thermal capacity of HPWH, as compared to ERWH, when temperature set point is increased to 135°F

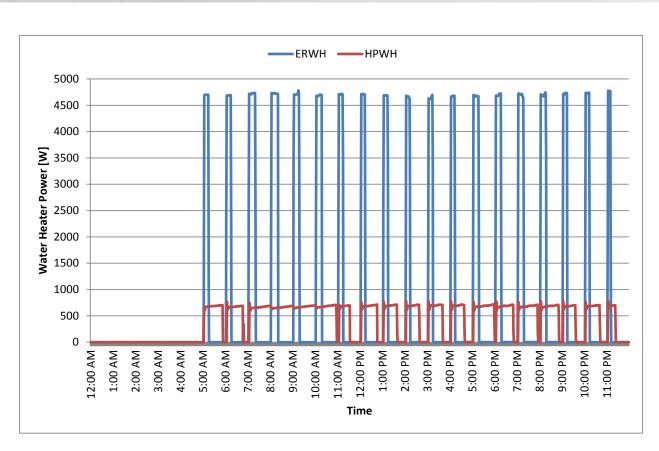

Baseline Performance

Proudly Operated by Battelle Since 1965



Lab Home B

Baseline Performance

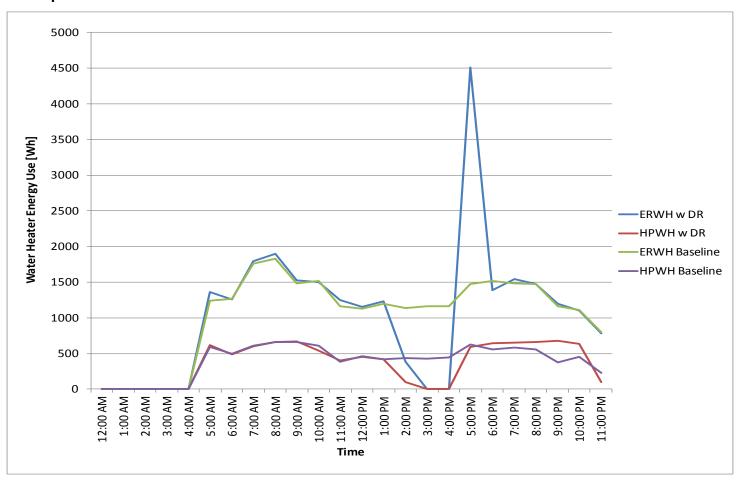


Proudly Operated by Battelle Since 1965

Pacific Northwest

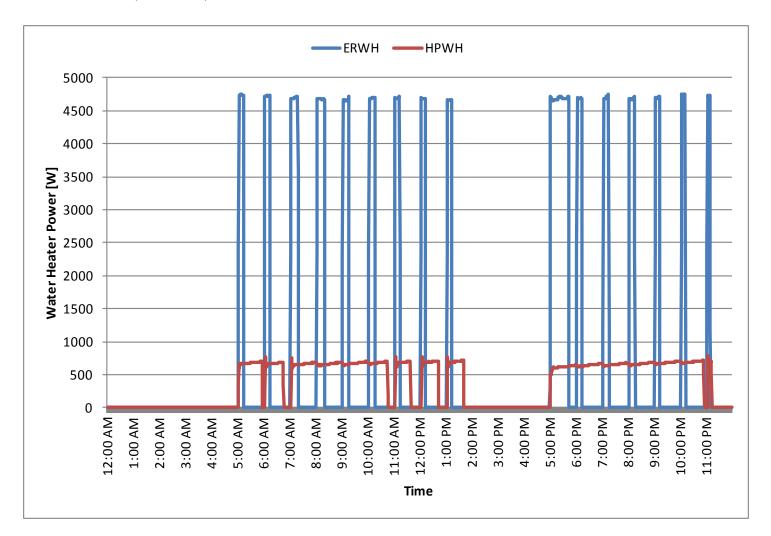
HPWH Efficiency Evaluation

- 61.7 ± 1.7% energy savings from HPWH as compared to ERWH
- Also note:
 - Power draw relatively fixed for HPWH and ERWH for individual unit
 - HPWH operates much more than ERWH

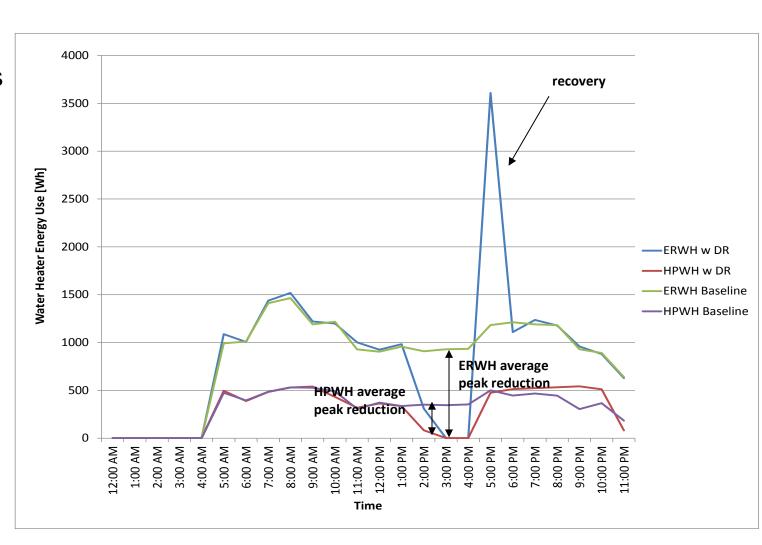


Water Heater Type	Baseline Daily Energy Use		
	(W·h/day)		
ERWH	20,073 ± 348		
HPWH	7,684 ± 119		

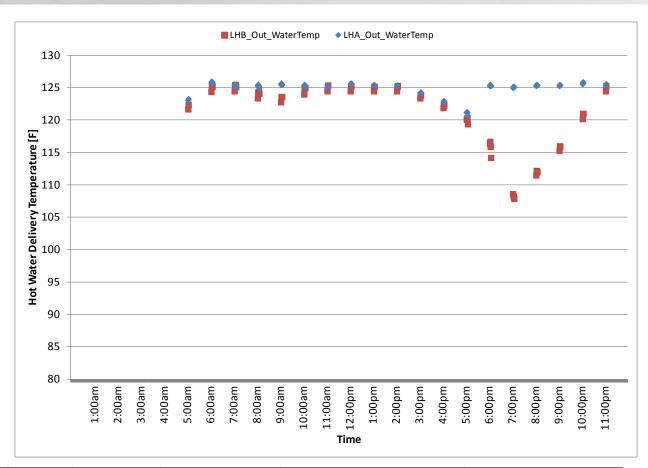
Extrapolating to Population Performance


- Operating time each hour defines DR performance
 - Can be extrapolated to population of water heaters due to average load shape

PM Peak Curtailment

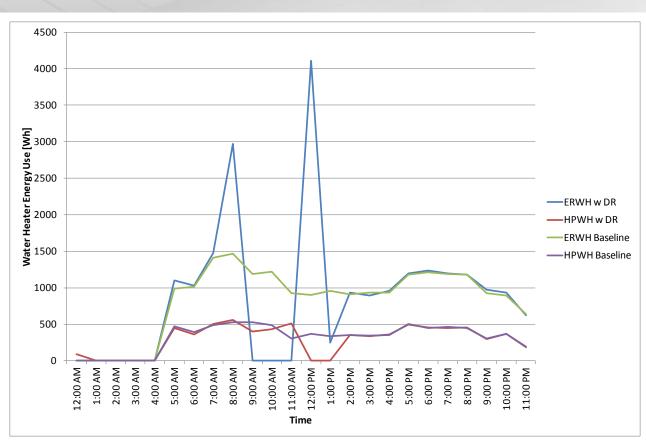

- Peak impact (W) commensurate with peak draw
 - ERWH = 4,650W; HPWH = 587W

PM Peak Curtailment


- However, duration of draw impacts "average power draw" over the DR event
 - ERWH = 18% of 3 hr event
 - HPWH = 54% of 3 hr event

PM Peak Curtailment

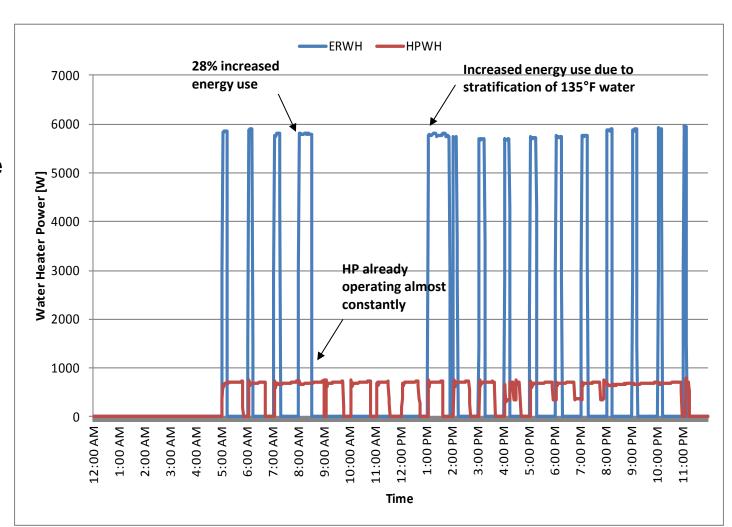
- Energy use reduced related to decrease in tank temperature experienced in HPWH
- Recovery of ER tank temperature associated with recovery spike in energy use in hour following DR event



Experiment	WH	Duration	Average Power	Average Energy Impact	Average Daily Energy
	Mode		Draw Impact	during DR Event	Impact (W·h/day)
			(W)	(W·h)	
P.M. Peak	HP	3 hours	-350	-965	-533
Curtailment	ER	3 hours	-924	-2,463	213

DEC Balancing Events

- Ability of water heater to respond based on operating time in baseline (no DR) operation
 - HP = 91% operating
 - ER = 31% operating
- 1-hr DEC balancing events exhibit rebound following DR event
 - Based on control logic of GE water heater



Experiment	WH	Duration	Average	Average Energy	Average Daily
	Mode		Power Draw	Impact during	Energy Impact
			Impact (W)	DR Event (W·h)	(W·h/day)
Morning	HP	1 hour	26	26	-689
DEC Balancing Event	ER	1 hour	1,305	1,305	1,309

DEC Balancing Event Rebound Response

- GE control strategy references one thermocouple (near top element)
- Stratification of temperature causes unusual "coast" and "rebound" behavior

Increased Tank Temperatures

Proudly Operated by Battelle Since 1965

- Both ERWH and HPWH are capable of reaching temperatures of 170 °F
 - Increased energy use of 5,550 Wh per event

with modified controls and minimal hardware

- ERWH = 71 minutes of constant operation at 4,650 W (with no water draws)
- HPWH = 4 hours of constant operation at 587 W (with no water draws)

November 22, 2013

Key Findings: Peak Curtailment and INC Balancing Events

- In general, HPWH provides 38% of the peak reduction or INC balancing response capability of ERWH
- Both HPWH and ERWH can effectively perform peak curtailment services in the morning, afternoon, and evening periods
 - HPWH has lower power draw but operates (on average) 2.68 times as often at the ERWH for the water hot water load
 - Decreased energy use observed for HPWH due to lower tank temps, however this may not be noticeable for most homeowners
 - ERWH exhibited significant rebound following DR event, which may be problematic (this would also apply to HPWH operating in Hybrid mode)
 - This analysis does not account for inherent peak load reduction from increased efficiency of HPWH (61.7%)

INC balancing results very similar

November 22, 2013

Key Findings: DEC Balancing Events

- Ability to respond very dependent on draw profile
 - ERWH had significantly better dynamic ramping capability to increase load (baseline operation = ~25% of hour)
 - HPWH already operating for a majority of each hour when a DEC event was initiated
- Response varies based on time of day
 - Morning ERWH has 50 times the response capability of HPWH because HPWH is already operating constantly to meet 10 gallon draw
 - Afternoon and evening ERWH has 6 to 8 times the response capability of the HPWH due to reduced loads
 - Late night ERWH has only 2.12 times the response capability of the HPWH because ERWH satisfies the increase in tank temperature to 135 °F in 16 minutes, whereas the HPHW takes the entire hour
- Higher tank temperatures could increase the response from both HPWH and ERWH

DR Results Summary

Proudly Operated by Battelle Since 1965

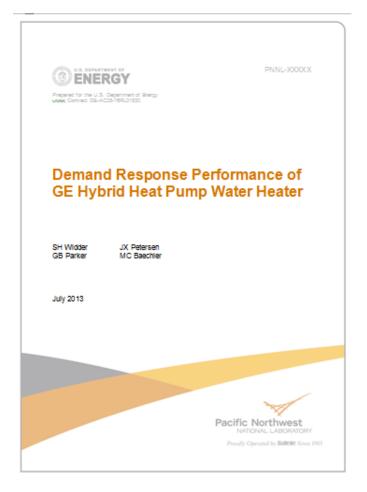
Experiment	Duration	Water Heater Mode	Average Power Draw Impact (W)	Average Energy Impact During DR Event (W·h)	Average Daily Energy Impact (W·h/day)	Number Equivalent HPWH/ ERWH
Peak	3 hours	HP	-439	-1,285	-498	2.64
Curtailment		ER	-1,158	-3,320	258	
INC	1 hour	HP	-442	-442	-159	2.67
Balancing*		ER	-1,185	-1,185	86	
DEC	1 hour	HP	220	220	-158	17.1**
Balancing		ER	1,174	1,174	1,543	

^{* =} does not include 2 a.m. INC balancing event, for which both water heaters had zero load.

November 22, 2013

^{** =} ranges from 2.12 for 2 a.m. event to 50.6 for 8 a.m. DEC event, when HPWH ramping capability is significantly decreased.

Future Experiments


- These experiments are only a initial indication of the relative response of HPWHs as compared to ERWHs under a given, high hot water draw profile with GE GeoSpring Hybrid HPWH
- Further research is required, including:
 - Explore ERWH response to DEC balancing events where the events are more spread out and with a standard ERWH to better characterize "coast and rebound" effect
 - Characterize the DEC response of ERWH and HPHW with elevated temperatures more fully
 - Determine effect of different hot water draw profiles on the results
 - Extrapolate experimental results from individual water heaters to populations of water heaters to determine the feasibility of HPWHs for performing DR functions at the program level using population models, such as PNNL's GridLAB-D (www.gridlabd.org)

Project Deliverables

Proudly Operated by Battelle Since 1965

Deliverable	Status	Expected Date Available
Report Summarizing DR Findings (includes descriptive graphs & tabulated summary data)	Complete	Early August 2013
Clean 1-min data of WH kW, kVA, water flow, and inlet & outlet temps for all experiments	In Progress	Late 2013

November 22, 2013 21

Proudly Operated by Battelle Since 1965

Questions?

November 22, 2013

Proudly Operated by Battelle Since 1965

Back Up Slides

November 22, 2013

The PNNL Lab Homes

Proudly Operated by Battelle Since 1965

Demonstrating tomorrow's efficient and smart technologies. ▶ Goal is to demonstrate an intelligent, energy efficient, and grid responsive home retrofit over a period of five to seven years which achieves 50% whole house energy savings.

PNNL Project Team

Proudly Operated by Battelle Since 1965

PNNL

- Graham Parker Staff Engineer, Project Manager
- Sarah Widder, Engineer, Principal Investigator
- Viraj Shrivastava, Engineer, DR Lead
- Bora Akoyl, Senior Engineer, DR Engineer
- Vrushali Mendon, Engineer, Energy Modeling
- Nathan Bauman, Engineer, Metering
- Erica Johnson, Energy Modeling

NEW

Brady Peeks, Engineer/Manufactured Homes

GE Appliances

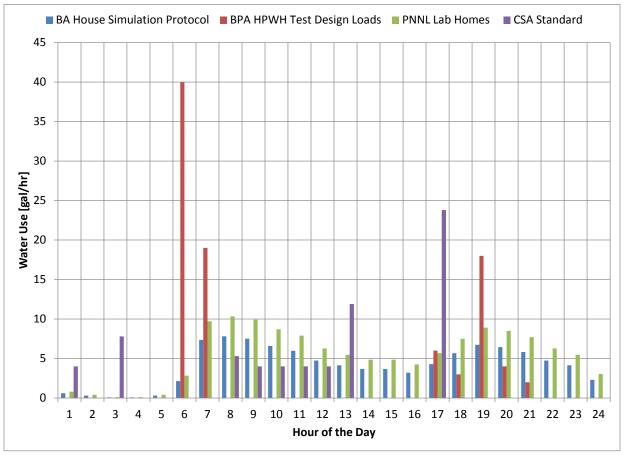
Jonathan Smith/Scot Shaffer, Engineers/Software & Hardware

Efficiency Solutions (subcontractor)

Greg Sullivan, Principal/Metering & Analysis

Monitoring Approach

Monitored Parameter	Monitoring Method/Points	Monitored Variables	Data Application	Existing or New?			
	Electrical Powe	r Measurements					
Whole House Electrical Power and Circuit Level Power HPWH Electrical Power Electric Power for HPWH Fan Power for Electric Heaters	1 Campbell data acquisition system with 42 current transducers at electrical power mains and panel	kW, amps, volts	Comparison and difference calculations between homes of power profiles time-series energy use differences	Existing			
	Temperature	Measurements	and savings				
Inlet Water Temperature	Insertion thermocouple	Temp.,°F	Characterize impact of incoming water temperature on HPWH performance	New			
Outlet Water Temperature	Insertion thermocouple		Monitor outlet water temperature as proxy for tank temperature	New			
Flow Rate Measurements							
Outlet Water Flow Rate November 22, 2013	Turbine flow meter, in line with hot water outlet prior to mixing valve	Flow rate, gallons per minute (gpm)	Verify water draws are in accordance with specified profile	New 26			


Hot Water Draw Profile

- Performance very dependent on hot water draw profile
- Draw profile PNNL selected representative of typical daily draw pattern for group of homes
 - Based on Building America House Simulation Protocol
- ► 125 °F set point
 - Based on LBNL Meta-Analysis recently performed by Lutz and Melody (2012)
- Fixed 1.5 gpm flow rates
 - Tank water heater performance more dependent on volume of draw than frequency of draws
 - Consistent with LBNL study of typical flow rates (1 to 1.5 gpm) and duration (1 to 4 minutes in length)
- Selected high draw volume to explore "worst-case scenario" impacts on tank temperature and maximum availability of DR resources
 - Initially simulated 97 gal/day, consistent with LBNL study's "high" daily draw volume (98.04 gal/day)
 - Had to increase flow rates to 2 gpm to achieve consistent performance home to home, increasing draw volume to 130 gal/day

Hot Water Draw Profile

Profile	Daily Hot Water Use (gal/day)
Building America House Simulation	97 (6 people)
Protocol	
BPA HPWH Evaluation	90 (4 people)
Canadian Test Standard	68.8 ("high usage")
PNNL Lab Homes	130

Building America House Simulation Protocol

Proudly Operated by Battelle Since 1965

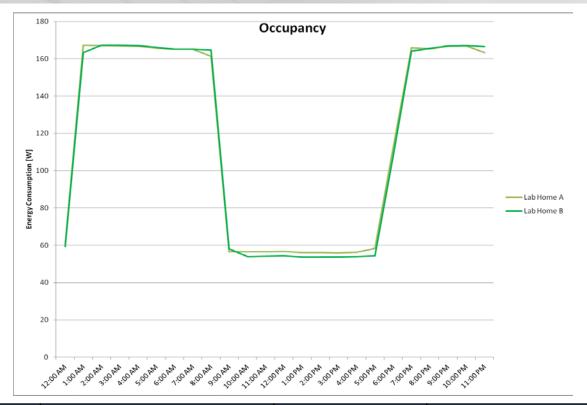
End Use	End Use Water Temperature	Water Use	Sensible Heat Gain	Latent Heat Gain
Clothes washer	water heater setpoint	2.35 + 0.78 × N _{br} gal/day (hot only)	0*	0*
Common laundry	water heater setpoint	2.47 gal/day/housing unit (hot only)	0*	0*
Dishwasher	water heater setpoint	2.26 + 0.75 × N _{br} gal/day (hot only)	0*	0*
Shower	110°F	14.0 + 4.67 × N _{br} gal/day (hot and cold)	741 + 247 × N _{br} Btu/day	703 + 235 × N _{br} Btu/day (0.70 + 0.23 × N _{br} pints/day)
Bath	110°F	3.5 + 1.17 × N _{br} gal/day (hot and cold)	185 + 62 × N _{br} Btu/day	0**
Sinks	110°F	12.5 + 4.16 × N _{br} gal/day (hot and cold)	310 + 103 × N _{br} Btu/day	140 + 47 × N _{br} Btu/day (0.14 + 0.05 × N _{br} pints/day)
Office/public sink	110°F	0.028 × N _{units} gal/day (hot and cold)	0.69 × N _{units} Btu/day	0.314 × N _{units} Btu/day (3.14 × 10 ⁻⁴ × N _{units} pints/day)

^{*} Sensible and latent heat gains from appliances are included in the section titled, "Appliances and Miscellaneous Electric Loads."

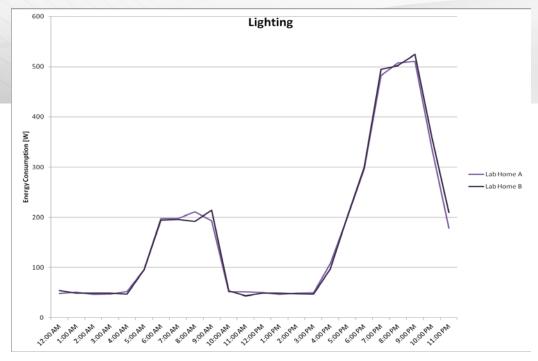
Source: Hendron and Engebrecht 2010.

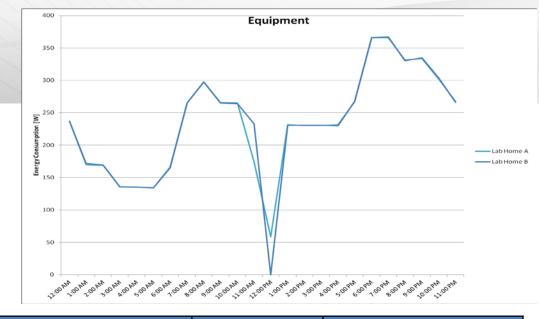
November 22, 2013 29

^{**} Negligible compared to showers and sinks.


Canadian Standards Association Hot Water Draw Profile

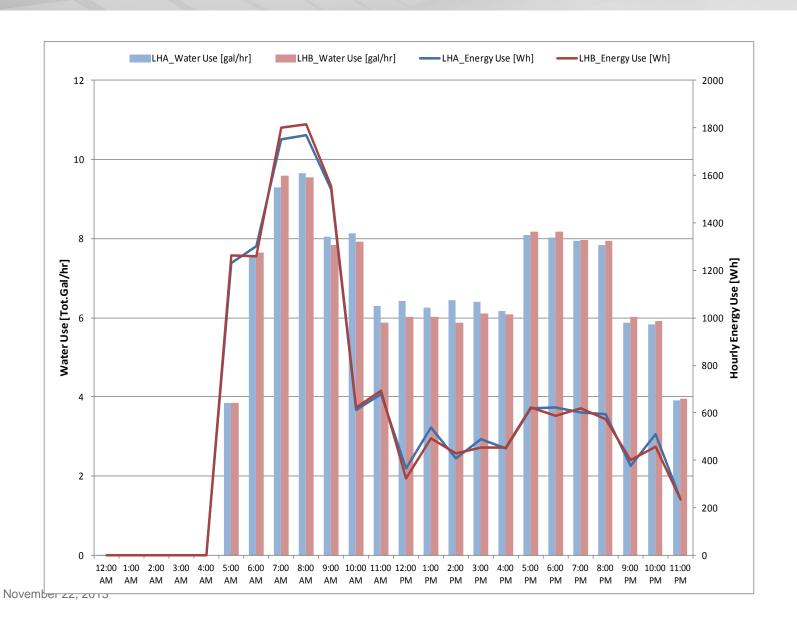
			WAT	ER HEATER	CLASSIFICAT	ION		
		LOW	USAGE	MEDIU	M USAGE	HIGH	HIGH USAGE	
Draw No.	TIME OF DAY (HH:MM:SS)	VOLUME DRAWN	FLOWRATE (gal / Min)	VOLUME DRAWN	FLOWRATE (gal / Min)	VOLUME DRAWN	FLOWRATE (gal / Min)	
		(gal)		(gal)		(gal)		
1	00:00:00	2.6	1.0	4	1.0	4.0	1.0	
2	3:00:00	2.6	1.0	2.6	1.0	2.6	1.0	
3	3:07:38	2.6	1.0	2.6	1.0	2.6	1.0	
4	3:13:17	2.6	1.0	2.6	1.0	2.6	1.0	
5	8:00:00			4	1.0	5.3	1.0	
6	9:00:00	1.3	1.0	4	1.0	4.0	1.0	
7	10:00:00	1.3	1.0	2.6	1.0	4.0	1.0	
8	11:00:00	1.3	1.0	2.6	1.0	4.0	1.0	
9	12:00:00			2.6	1.0	4.0	1.0	
10	13:00:00					11.9	3.0	
11	17:00:00	4.0	3.0	9.2	3	9.2	1.0	
12	17:06:19		1.0					
13	17:08:05			4.0	1.0			
14	17:13:16	4.0	1.0					
15	17:14:14					5.3	1.0	
16	17:15:02			4.0	1.0			
17	17:21:13	4.0	1.0					
18	17:21:59			4.0	1.0			
19	17:22:41					5.3	1.0	
20	17:30:58					4.0	1.0	
*	18:15:00	End Test						


Occupancy Simulation: Occupancy


Hours of Day	Simulation Strategy	Simulated Watts	Load Locations
1 a.m. – 7 a.m.	3 60-Watt table lamps	180	Lamps in master and each bedroom
7 a.m. – 8 a.m.	3 60-Watt table lamps	180	Lamps in master and each bedroom
8 a.m. – 9 a.m.	1 60-Watt table lamp	60	Lamp in master bedroom
9 a.m. – 4 p.m.	1 60-Watt table lamp	60	Lamp in master bedroom
4 p.m. – 5 p.m.	1 60-Watt table lamp	60	Lamp in master bedroom
5 p.m. – 6 p.m.	2 60-Watt table lamps	120	Lamps in master and East bedroom
6 p.m. – 9 p.m.	3 60-Watt table lamps	180	Lamps in master and each bedroom
9 p.m. – 12 p.m.	3 60-Watt table lamps	180	Lamps in master and each bedroom
Wattage Totals		3180	

Occupancy Simulation: Lighting

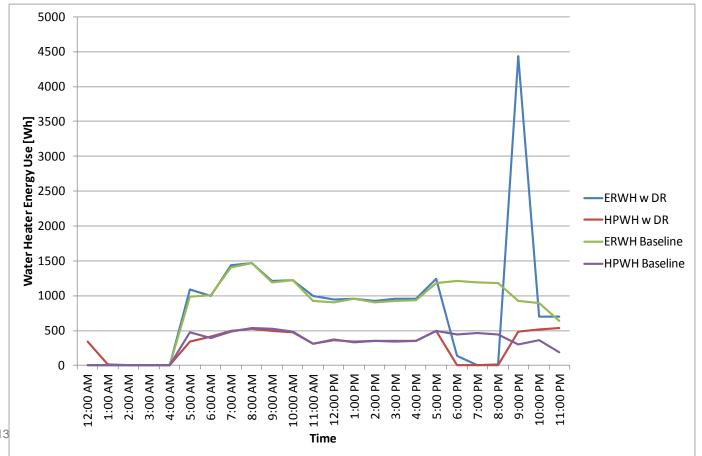
Hours of Day	Simulation Strategy	Simulated Watts	Load Locations
1 a.m. – 4 a.m.	Ceiling fixture, 1 60-Watt lamp	60	Hall fixture
4 a.m. – 5 a.m.	Ceiling fixture, 2 60-Watt lamps	120	Entry and living room fixtures
5 a.m. – 6 a.m.	2 ceiling fixtures, 2 60-Watt lamps each	240	Kitchen fixtures
6 a.m. – 7 a.m.	2 ceiling fixtures, 2 60-Watt lamps each	240 Kitchen fixtures	
7 a.m. – 8 a.m.	2 ceiling fixtures, 2 60-Watt lamps each	240	Kitchen fixtures
8 a.m. – 9 a.m.	Ceiling fixture, 2 60-Watt lamps	120	Kitchen fixtures
9 a.m. – 3 p.m.	Ceiling fixture, 1 60-Watt lamp	60	Hall fixture
3 p.m. – 4 p.m.	Ceiling fixture, 2 60-Watt lamps	120	Entry and living room fixtures
4 p.m. – 5 p.m.	2 ceiling fixtures, 2 60-Watt lamps each	240	Kitchen fixtures
5 p.m. – 6 p.m.	3 ceiling fixtures, 2 60-Watt lamps each	360	Kitchen and entry fixtures
6 p.m. – 7 p.m.	5 ceiling fixtures, 2 60-Watt lamps each	600	Master, kitchen, and 2 bedroom fixtures
7 p.m. – 8 p.m.	5 ceiling fixtures, 2 60-Watt lamps each	600	Master, kitchen, and 2 bedroom fixtures
8 p.m. – 9 p.m.	5 ceiling fixtures, 2 60-Watt lamps each	600	Master, kitchen, and 2 bedroom fixtures
9 p.m. – 10 p.m.	4 ceiling fixtures, 3 60-Watt lamps each	420	Master, kitchen and hall fixtures
10 p.m. – 11 p.m.	2 ceiling fixtures, 2 60-Watt lamps each	240	Kitchen fixtures
11 p.m. – 12 p.m.	Ceiling fixture, 1 60-Watt lamp	60	Hall fixture
Wattage Totals		4800	


Occupancy Simulation: Equipment

Hours of Day	Simulation Strategy	Duration of Load (Minutes) Simulated Watts		Load Locations
1 a.m. – 2 a.m.	One 500 W & one 1,500 W wall heater	5	170	Living/dining room
2 a.m. – 3 a.m.	One 500 W & one 1,500 W wall heater	5	157	Living/dining room
3 a.m. – 4 a.m.	3 a.m. – 4 a.m. One 500 W & one 1,500 W wall heater		149	Living/dining room
4 a.m. – 5 a.m.	One 500 W & one 1,500 W wall heater	4	148	Living/dining room
5 a.m. – 6 a.m.	One 500 W & one 1,500 W wall heater	4	147	Living/dining room
6 a.m. – 7 a.m.	One 500 W & one 1,500 W wall heater	5	181	Living/dining room
7 a.m. – 8 a.m.	One 500 W & one 1,500 W wall heater	8	258	Living/dining room
8 a.m. – 9 a.m.	One 500 W & one 1,500 W wall heater	9	284	Living/dining room
9 a.m. – 3 p.m.	One 500 W & one 1,500 W wall heater	8	268	Living/dining room
3 p.m. – 4 p.m.	One 500 W & one 1,500 W wall heater	8	250	Living/dining room
4 p.m. – 5 p.m.	One 500 W & one 1,500 W wall heater	7	243	Living/dining room
5 p.m. – 6 p.m.	One 500 W & one 1,500 W wall heater	7	236	Living/dining room
6 p.m. – 7 p.m.	One 500 W & one 1,500 W wall heater	7	229	Living/dining room
7 p.m. – 8 p.m.	One 500 W & one 1,500 W wall heater	7	222	Living/dining room
8 p.m. – 9 p.m.	One 500 W & one 1,500 W wall heater	7	235	Living/dining room
9 p.m. – 10 p.m.	One 500 W & one 1,500 W wall heater	7	220	Living/dining room
10 p.m. – 11 p.m.	One 500 W & one 1,500 W wall heater	8	282	Living/dining room
11 p.m. – 12 p.m.	One 500 W & one 1,500 W wall heater	11	356	Living/dining room
Wattage Totals			5,875	

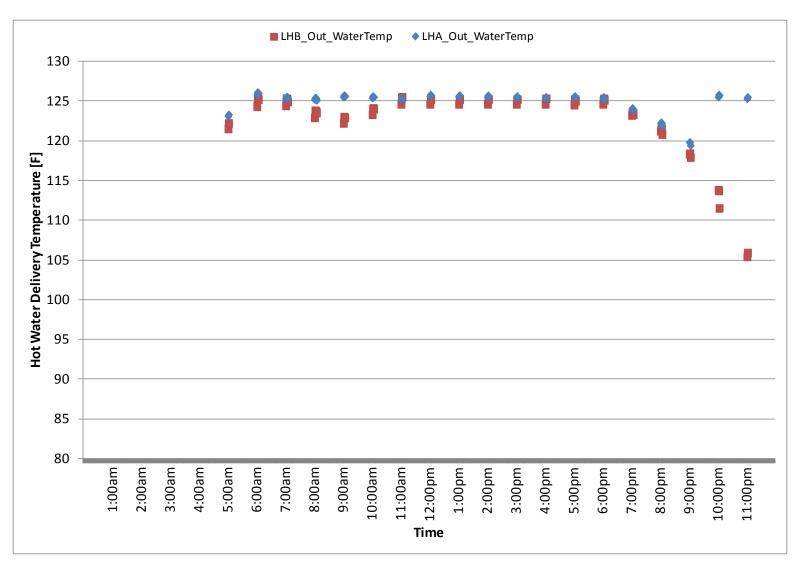
WH Baseline Performance

AM Peak Curtailment

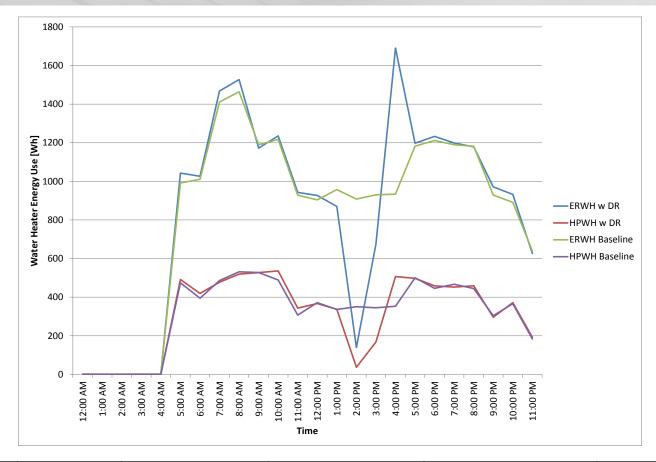

- Unable to collect data due to internet connectivity issues and connection with GE servers
- Theoretical calculation yields:

Experiment	WH Mode	Duration	Average Power Draw Impact (W)	Average Energy Impact during DR Event (W·h)	Average Daily Energy Impact (W·h/day)
A.M. Peak	HP	3 hours	-515	-1,545	N/A
Curtailment	ER	3 hours	-1,355	-4,065	N/A

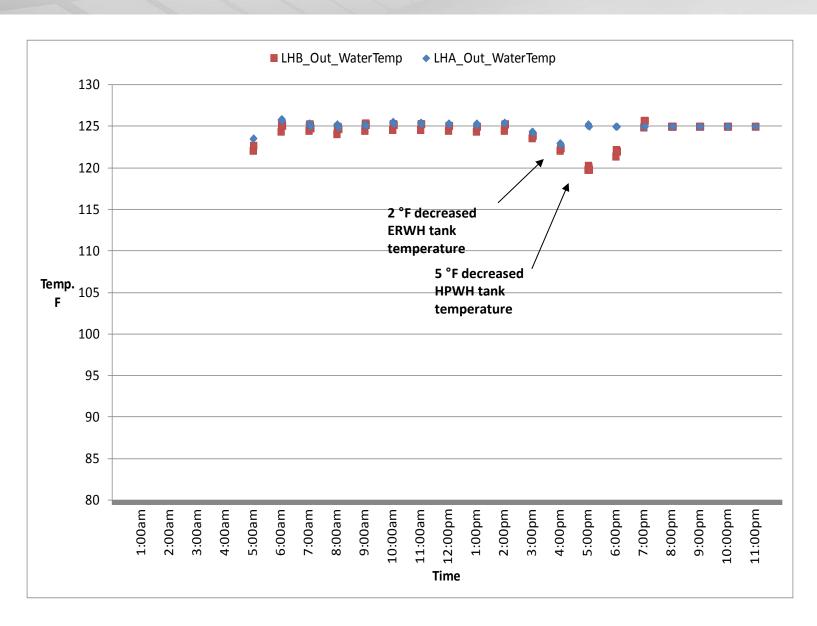
EVE Peak Curtailment



Experiment	WH Mode	Duration	Average Power	Average Energy	Average Daily
			Draw Impact (W)	Impact during DR	Energy Impact
				Event (W·h)	(W·h/day)
EVE Peak	HP	3 hours	-453	-1,345	-463
Curtailment	ER	3 hours	-1,194	-3,433	303

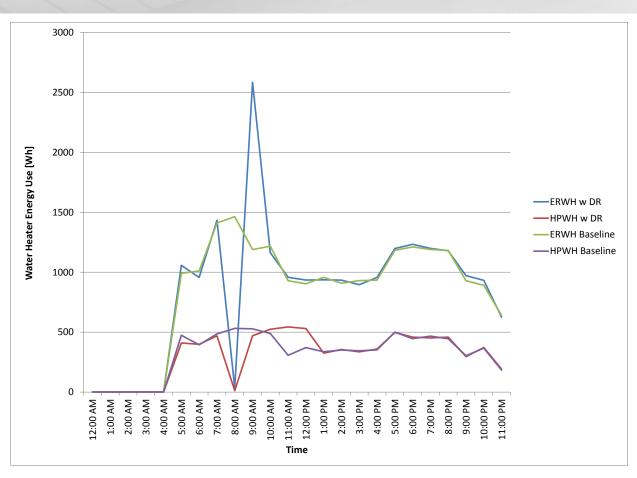

EVE Peak Curtailment Tank Temperature

PM INC Balancing Event



Experiment	WH Mode	Duration	Average Power Draw Impact (W)	Average Energy Impact during DR Event (W·h)	Average Daily Energy Impact (W·h/day)
Afternoon INC	HP	1 hour	-351	-351	-218
Balancing Event	ER	1 hour	-908	-908	-15

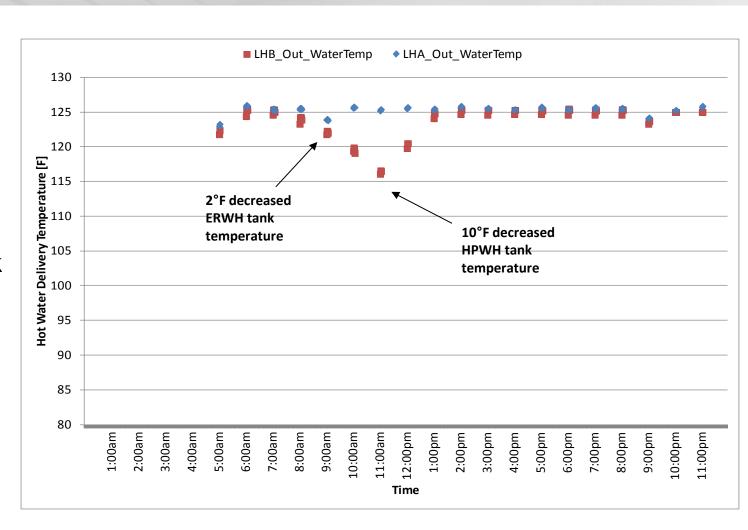
PM INC Balancing Event Tank Temperature


INC Balancing Events

Proudly Operated by Battelle Since 1965

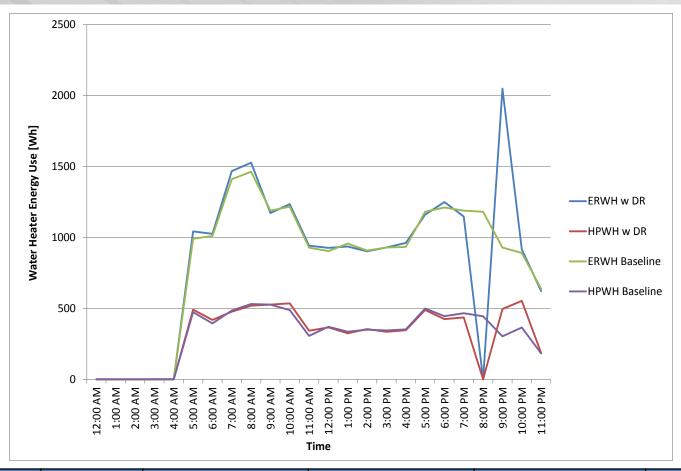
- Decreased power (W) AND energy (Wh) use commensurate with operating time
- AM, PM, and EVE all show expected performance

No Late night
INC Balance due
to no load at
that time



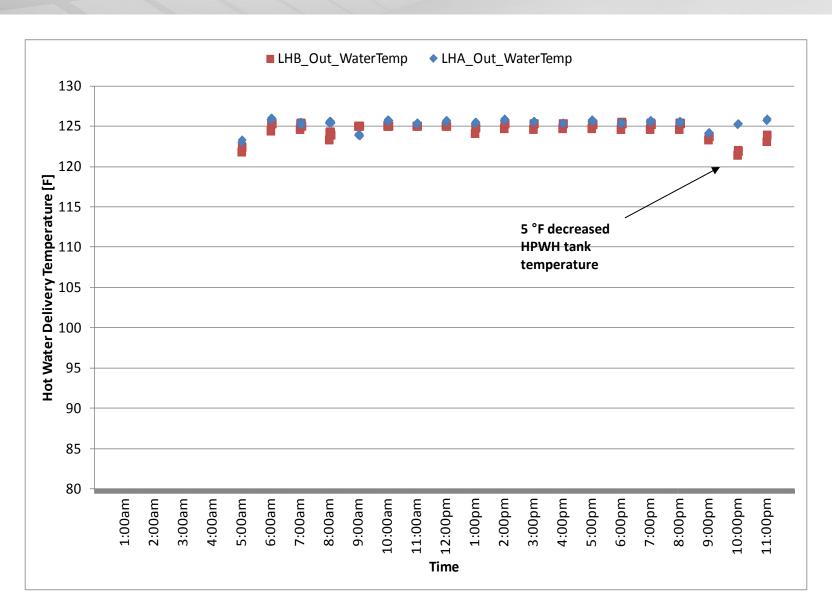
Experiment	WH	Duration	Average Power	Average Energy	Average Daily
	Mode		Draw Impact	Impact during	Energy Impact
			(W)	DR Event (W·h)	(W·h/day)
Morning	HP	1 hour	-532	-532	-216
INC					
Balancing	ER	1 hour	-1,464	-1,464	118
Event					

INC Balancing Event Tank Temperature



- Reduced
 energy use
 in HPWH
 significant
 due to
 reduced tank
 temperature
- May not be experienced by most occupants

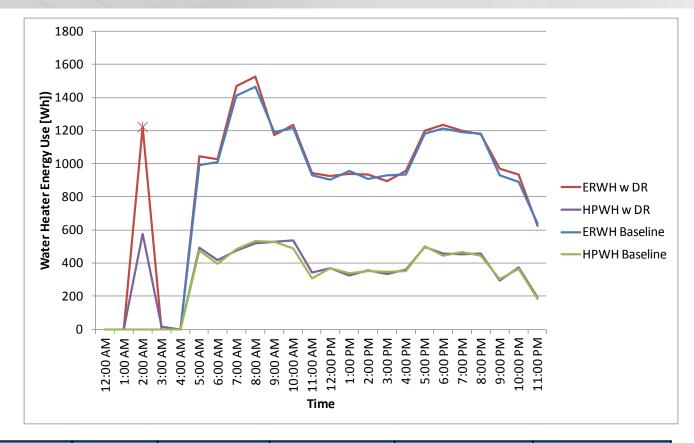
EVE INC Balancing Event



Experiment	WH Mode	Duration	Average Power Draw Impact (W)	Average Energy Impact during DR Event (W·h)	Average Daily Energy Impact (W·h/day)
Evening INC	HP	1 hour	-445	-445	-42
Balancing Event	ER	1 hour	-1,182	-1,182	155

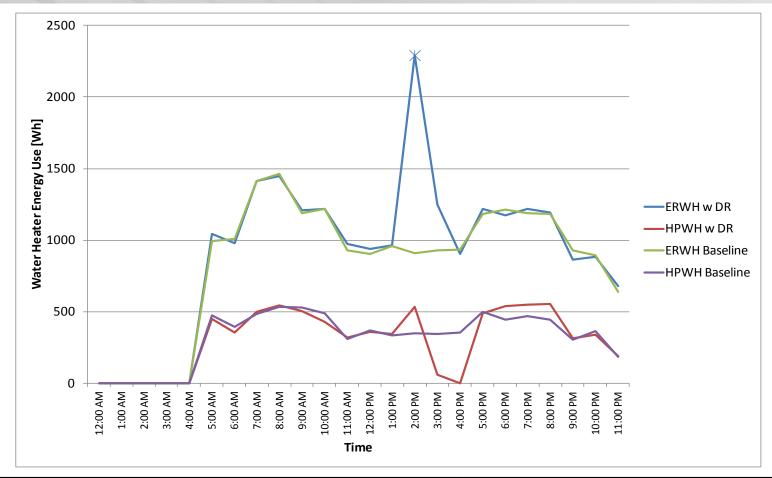

EVE INC Balancing Event Tank Temperature

EVE DEC Balance Event Confounded by Coast and Rebound Effect


Experiment	WH Mode	Duration	Average Power Draw Impact (W)	Average Energy Impact during DR Event (W·h)	Average Daily Energy Impact (W·h/day)
Morning DEC	HP	1 hour	98	98	-347
Morning DEC Balancing Event	ER	1 hour	787 (1,222*)	787 (1,222*)	Unable to calculate
	* = data point is estimated based on theoretical calculation				

Late Night DEC Balancing Event

Proudly Operated by Battelle Since 1965


Both ERWH and HPWH effectively provide DEC balancing event in the late night hours

Experiment	WH Mode	Duration	Average Power Draw Impact (W)	Average Energy Impact during DR Event (W·h)	Average Daily Energy Impact (W·h/day)
Late Night	HP	1 hour	577	577	700
DEC Balancing Event	ER	1 hour	1,222*	1,222*	Unable to calculate
	* = data point is estimated based on theoretical calculation				

PM DEC Balancing Event



Experiment	WH Mode	Duration	Average Power Draw	Average Energy Impact	Average Daily	
			Impact	during DR Event	Energy Impact	
			(W)	(W⋅h)	(W·h/day)	
Afternoon DEC	HP	1 hour	182	182	-297	
Balancing	ER 1 hour 1,381* 1,381* 1,776*					
	* = data point is estimated based on theoretical calculation					

DEC Balancing Event Tank Temperature

Calculation of Theoretical Hourly Demand

$$Q = m \times C_p \times (T_{setpoint} - T_o) \times 0.293 \, Wh/_{Btu}$$

where:

Q = energy in Wh

m = mass of water in pounds

 C_p = specific heat capacity of water (1 $^{Btu}/_{lb \times ^{\circ}F}$)

 $T_{setpoint}$ = the desired set point of the water heater tank in °F

 T_o = the initial temperature of the water (i.e., the previous tank set point) in °F

If there are draws during the hour, then use:

$$Q = \left[m_{tank} \times C_p \times \left(T_{setpoint} - T_o \right) + m_{draw} \times C_p \times \left(T_{setpoint} - T_{in} \right) \right] \times 0.293 \, Wh /_{Btu}$$

where:

 T_{in} = the incoming water temperature in °F

and other variables are as described previously.

Calculation of Theoretical Number of HPWHs Required to Provide the Same DR Potential as a Single ERWH

$$\frac{ERWH\ Power\ Use\ [W]}{HPWH\ Power\ Use\ [W]} = \frac{4,650\ W}{587\ W} = 7.9 \rightarrow 8\ HPWH/ERWH$$