

Proudly Operated by Battelle Since 1965

PNNL Lab Homes

A Platform for Efficiency and Smart Grid Technology Demonstrations

Presented at the Northwest Public Power Association Northwest Communications & Energy Innovations Conference

> Sarah Widder, Research Engineer Graham Parker, Senior Staff Engineer Pacific Northwest National Laboratory Richland, WA 99352

Welcome to the PNNL Lab Homes...

Proudly Operated by Battelle Since 1965

Demonstrating tomorrow's efficient and smart technologies Goal is to demonstrate an intelligent, energy efficient, and grid responsive home retrofit over a period of 5 to 7 years which achieves 50% wholehouse energy savings.

Lab Homes Partners

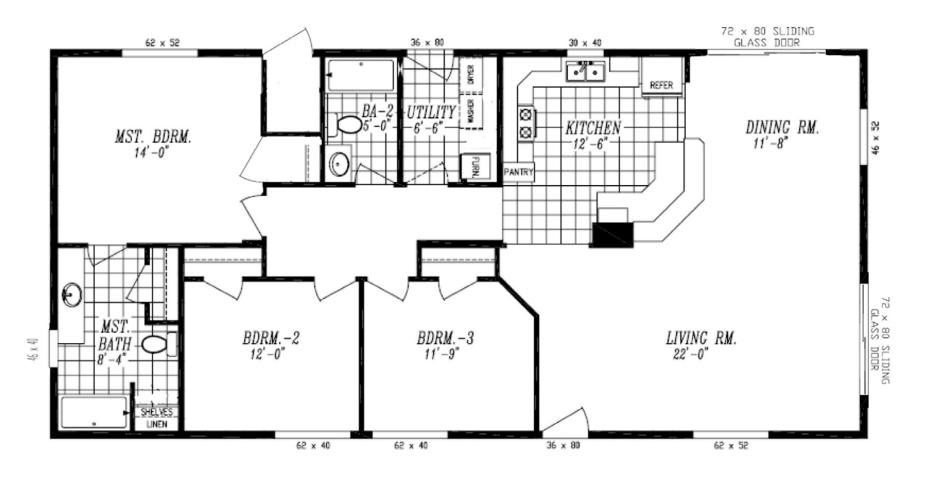
Initial Partners

- DOE/BTO/Building America-ARRA
- DOE/BT/Windows and Envelope R&D
- Bonneville Power Administration
- DOE/OE
- PNNL Facilities
- Tri Cities Research District
- City of Richland
- Northwest Energy Works
- WSU-Extension Energy Program
- Battelle Memorial Institute (made land available)

Battelle The Business of Innovation

Lab Homes Characteristics

Specified to represent existing manufactured and stick-built housing

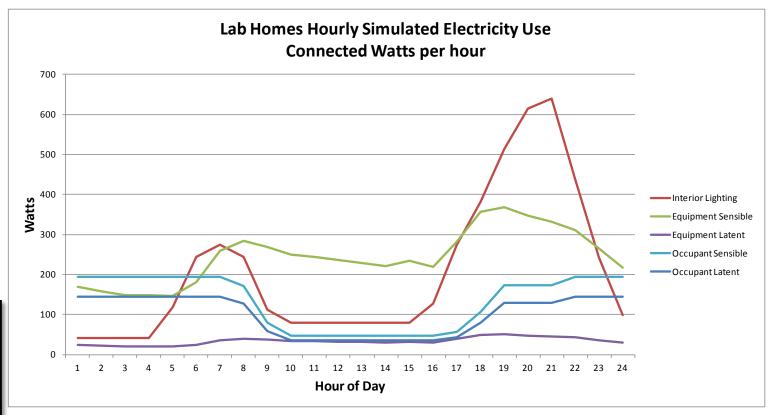

- **3** BR/2BA 1493-ft² double-wide, factory-built to HUD code.
- All-electric with 13 SEER/7.7 HSPF heat pump central HVAC + alternate Cadet fan wall heaters throughout
- R-22 floors, R-11 walls & R-22 ceiling with composition roof
- 195.7-ft² (13% of floor) window area
- Wood siding
- Incandescent lighting
- Bath, kitchen, whole-house exhaust fans
- Carpet + vinyl flooring
- Refrigerator/range/washer/dryer/dishwasher
- All electric

Modifications include end-use metering, sensors, weather station, and three electric vehicles charging stations

Lab Homes Floor Plan

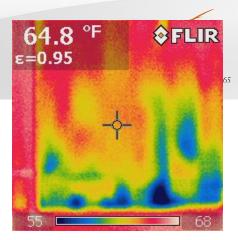
Metering and Monitoring Characteristics

- Energy metering
 - 42 individually monitored breakers with ½ controllable and whole house
 - Itron smart billing meter
- Temperature and relative humidity
 - 15 interior room temperature thermocouples
 - 22 interior and exterior glass surface temperature thermocouples
 - 2 room relative humidity sensors
 - 2 mean radiant temperature sensors
- Water and environment
 - Controllable water flows at fixtures
 - Solar insolation (pyranometer) inside home
 - Site weather station
- Data collection via 2 Campbell Scientific data loggers/home
 - 1 minute, 15 minute, and hourly



Occupancy Simulation

Simulation in accordance with Building America house simulation protocol



60W light bulb simulating adult occupant

Initial Null Testing

- Building construction comparison
 - Homes' air leakage (CFM air flow @50Pa) was within 6.2%
 - Homes' duct leakage (CFM air flow @50Pa) was within 2%, similar distribution performance
 - Heat pumps demonstrated similar ΔT across coil and air handler flows within 6%
 - Ventilation fans' flows within 2.5%
 - Thermal conductivity with IR camera shows settling of R-11 batt insulation in 2x6 wall cavity in both homes.

SUMMARY DATA					
	Baseline Home		Experimental Home		
	Average Value	+/- Error	Average Value	+/- Error	
CFM@25	477.4	30.4	478.5	30.5	
CFM@50	638.5	27.8	681.1	26.7	
ACH50	3.07	0.13	3.28	0.13	
ACH _n *	0.14	0.01	0.15	0.01	
*n = 21.5, based on single story home in zone 3, minimal shielding					

Highly Insulating Windows Experiment

First Experiment – Highly Insulating Windows

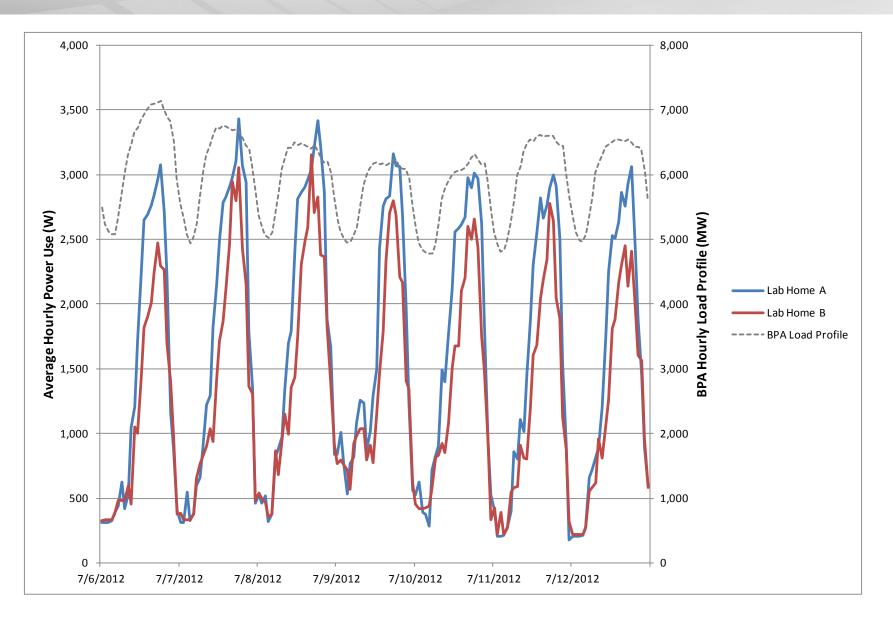
- Joint funding by BPA & DOE
- Evaluate impact on energy consumption and thermal comfort of highly insulating (R-5) windows
 - Jeld Wen triple pane, argon/krypton filled, vinyl frame windows with triple low-E 366 coating on two inside faces
 - Compared to "typical" double pane, aluminum frame, clear glass windows
 - No window treatments in either home
 - Heat pump (only) as heating/cooling system

	Baseline Home Windows			Insulating ndows
	Windows	Patio Doors	Windows	Patio Doors
U-factor	0.68	0.66	0.20	0.20
SHGC	0.7	0.66	0.19	0.19
VT	0.73	0.71	0.36	0.37

Summary of Energy Savings of R5 Windows

- The side-by-side assessment in the PNNL Lab Homes demonstrates that highly insulating (R5)/low SHGC (0.19) windows:
 - Save an average of 12.2% on whole-house energy use annually
 - 11.6 \pm 1.53% in the heating season
 - 18. 4 \pm 2.06% in the cooling season
 - Reduce peak demand in the summer
 - 24.7 ± 0.1% in cooling season, which aligns with the region's peak power period

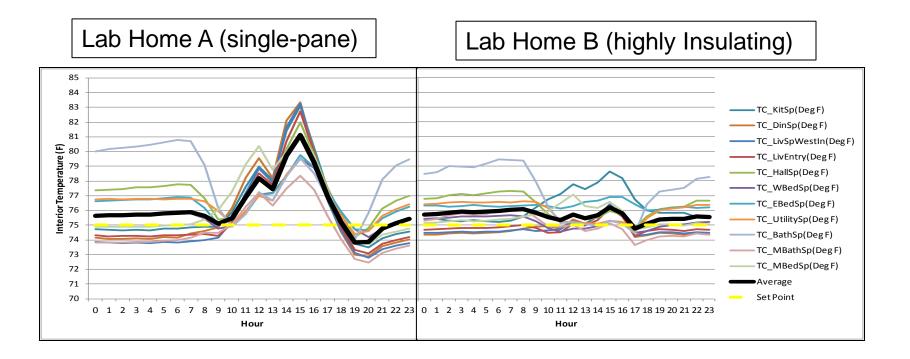
Average Daily Energy Savings



		Average Daily Energy Use (Wh)	Average Daily Energy Savings (Wh)	Average Daily Energy Savings (%)	
Heating	Lab Home A (Baseline)	47,599	- 5,821 ± 1,054	11 6 + 1 52	
Season	Lab Home B (Experimental)	41,896	- 3,821 ± 1,034	11.6 ± 1.53	
Cooling	Lab Home A (Baseline)	35,572	- 6,518 ± 842	18.4 ± 2.06	
Season	Lab Home B (Experimental)	29,055	- 0,310 ± 042	10.4 ± 2.00	
Model	Lab Home A (Baseline)	28,537	1 270	13.2	
	Lab Home B (Experimental)	24,784	- 1,370	13.2	

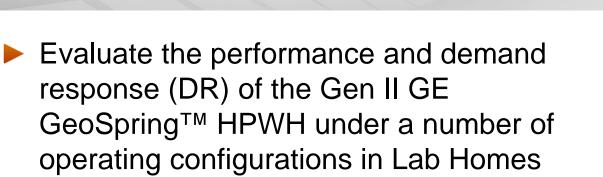
Modeled performance used EnergyPlus to extrapolate tested performance to entire year.

Peak Load Reduction



Summary Thermal Comfort Results

- The side-by-side assessment in the PNNL Lab Homes demonstrates that highly insulating (R5) windows:
 - Improve thermal comfort through more consistent interior temperatures and higher surface glass temperatures
 - Decrease the risk of condensation and mold issues in regions with high humidity


Cost Effectiveness of R5 Windows

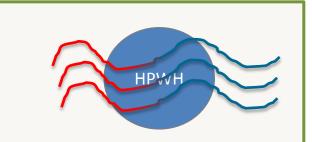
Long payback periods of 23-35 years compared to today's ENERGY STAR windows

- Windows cost data highly variable
- Costs will change, savings will not
- Cost effectiveness could be improved through:
 - Improvements in manufacturing and/or market penetration
 - Valuation of non-energy benefits, e.g. occupant comfort
 - Optimized duct design and downsized HVAC systems to reduce HVAC costs

Current (FY13) Experiments

- Evaluate impact on energy consumption and thermal comfort of low-E storm windows
- Develop and test a laboratory testing protocol of selected non-intrusive load monitoring (NILM) technologies
- Evaluation of Smart Grid appliances and control strategies

HPWH Experiment: Motivation


- Heat pump water heaters (HPWH) can provide up to 62% energy savings over electric resistance water heaters.¹
- Currently, market adoption and utility program incentives of HPWHs are limited due to lack of understanding and field data regarding:
 - Impact on space conditioning energy consumption and occupant comfort.
 - Impact on demand response programs.

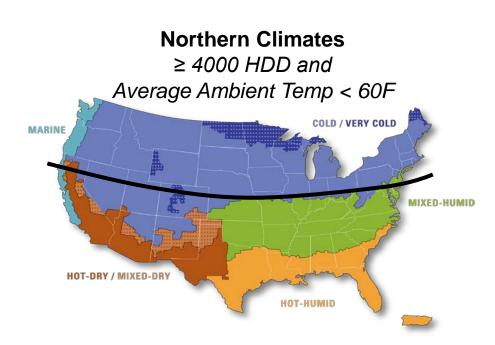
¹ Based on the DOE test procedure and comparison of an electric tank water heater (EF=0.90) versus a heat pump hot water heater (EF=2.35)

HPWHs in Conditioned Space

- HPWHs installed in interior space will use conditioned indoor air to heat water.
 - Benefit during cooling
 - Penalty during heating
 - May affect comfort
- Performance of HPWHs installed outside will have reduced performance.
 - Most HPWH compressors do not operate below 40-45 F.³

	Interior		Exterior	
	Summer	Winter	Summer	Winter
НР СОР	2.3 -	2.3 – 2.5		1
DHW Energy Savings	2,500 kWh/yr		1,650 kWh/yr	0
Impact on Space Energy Use	-0 to 200 kWh/yr +800 to 2,200 kWh/yr 300 to 2,600 kWh/yr		()
Total Savings			1,650	(Wh/yr

HPWHs with Exhaust Ducting

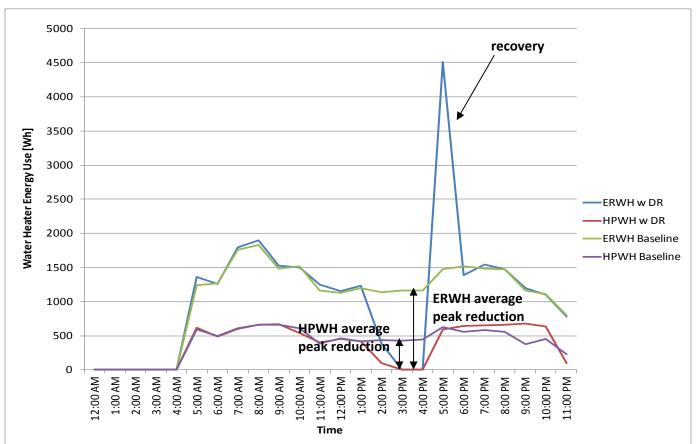


- Modeling has found ducting exhaust to effectively mitigate some adverse space conditioning impacts in Northern Climates.
 - Resulted in NEEA Northern Climate HPWH Specification requiring exhaust ducting for Tier 2 products.

	Minimum Northern Climate EF*	Minimum "Northern Climate" Features	Minimum supported installation locations	Sound levels**
Tier 1	1.8	ENERGY STAR compliance	 Semi-conditioned Unconditioned 	dBA < 65
Tier 2	2.0	 Tier 1 plus: Minimal use of electric heating elements Freeze protection Exhaust ducting option Compressor shut- down/notification 10 year Warranty Condensate Mgmt 	 Conditioned Semi-conditioned Unconditioned 	dBA < 60
Tier 3	2.4	 Tier 2 plus: Intake ducting option Air Filter Mgmt 	 Conditioned Semi-conditioned Unconditioned 	dBA < 55

* see Appendix A for details on definition and calculation method.

** see Appendix D for details on measurement method.

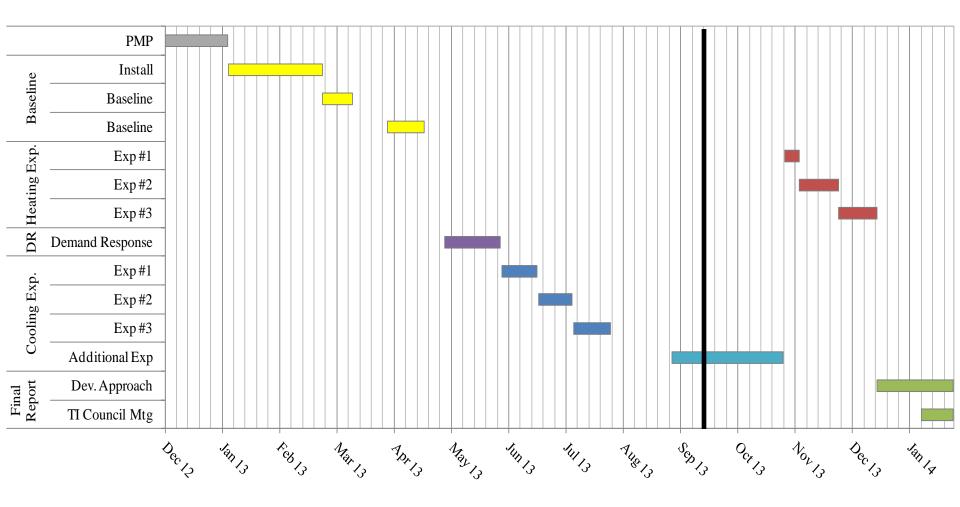

Requires data to verify model assumptions and findings.

HPWH Demand Response Characteristics

- Many utilities currently employ electric resistance water heaters to shave peak load by turning off the water heater.
- PNNL has also demonstrated the potential of using HPWHs to manage load (INC & DEC) for areas with high renewable penetration and to provide additional balancing and ancillary (voltage regulation) services.

Need to understand demand response characteristics of HPWHs as compared to electric resistance water heaters, including "dispatchable kW," "thermal capacity," and "response time."

HPWH Experimental Design


Highly controlled, side-by-side comparison of HPWHs installed in conditioned space in a number of configurations and as a demand response asset

	Experiment	Whole House Power/Energy Use [kWh or kW]	HVAC Power/Energy Use [kWh or kW]	HPWH Power/Energy Use [kWh or kW]	Temperature/ RH at Several Interior Locations* [°F/%]
PNNL Lab Homes Experiments	Impact of exhaust ducting	Whole house energy savings	Incremental HVAC systems energy use/savings	Impact of ducting and exhaust fan on HPWH efficiency	Impact of exhaust ducting on occupant comfort
	Impact of supply and exhaust ducting	Whole house energy savings	Incremental HVAC system energy use/savings	Impact of supply ducting and supply air temp on HPWH efficiency	Impact of supply and exhaust ducting on occupant comfort
	Demand response characteristics	Whole house power reduction during DR events	N/A	HPWH power reduction during DR events	*Tank temperature decrease during DR events

This information is necessary to support regional efficiency and manufactured housing programs and encourage more widespread adoption of HPWH nationally

HPWH Experiment Status

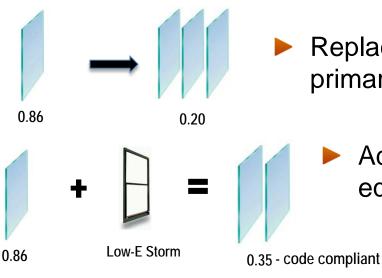
Demand Response Results

Proudly Operated by Battelle Since 1965

Deliverable	Status	Expected Date Available	PNNL-30000 Property for the U.S. Department of Prenzy user Contract Dis-ACOS-TERLO1630
Report Summarizing DR Findings (includes descriptive graphs & tabulated summary data)	Complete	Available Now	Demand Response Performance of GE Hybrid Heat Pump Water Heater
Clean 1-min data of WH kW, kVA, water flow, and inlet & outlet temps for all experiments	In Progress	Mid-Late September 2013	July 20 13
Efficiency Experimental Results	Cooling Season Data Analysis Underway	December 2013	Pacific Northwest NATIONAL LABORATORY Predity Operated by Battele Since

Available at: labhomes.pnnl.gov/resources

Northwest Operated by Battette Since 1965


Low-E Storm Window Experiment

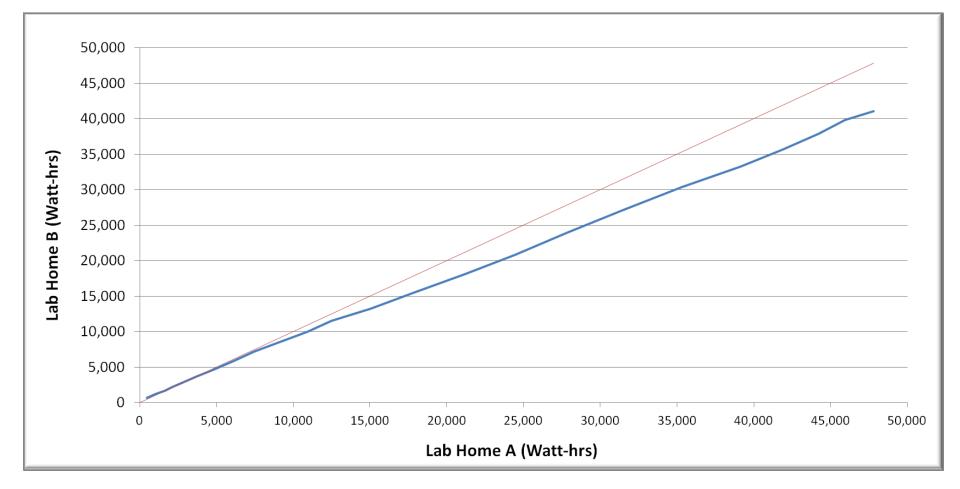
Windows are 'holes' in a building's thermal barrier not typically addressed by home energy retrofits due to high cost of window replacement

2009 IECC Requirements for Climate Zone 5		
Wall Insulation R-20		
Ceiling Insulation	R-38	
Window Insulation	~R-3	

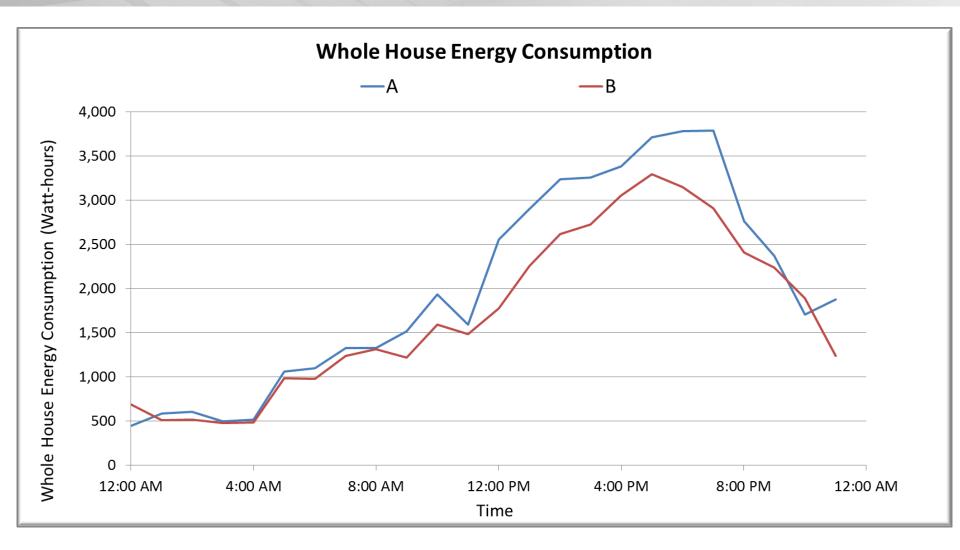
Low-E coatings are a thin metal or metallic oxide particles which are applied to the glazing surface to reduce radiant heat transfer and increase glass temperatures

- Replacing single pane with high efficiency, low-E primary window can reduce heat loss up to 40%
 - Adding low-E storm on top of single pane is equivalent to code compliant window

Low-E Storm Window Installation


Low-E storm windows are easy to install and cost ~25% as much as primary window replacement.

Low-E Storm Window Preliminary Results


Preliminary results indicate ~10% savings on a whole house basis, ~14% HVAC energy savings.

Full report available February 2014

Maximum Savings Coincident with Peak Energy Use in Home

Non-Intrusive Load Monitoring (NILM)

- NILM is a process for analyzing changes of voltage and current going into a residence to understand what appliances are used in the house as well as their individual energy consumption.
- NILMs can provide more cost-effective sub-metered energy information, which may increase penetration rates of energy retrofits, identify program opportunities, provide predictive maintenance for HVAC systems, and help encourage behavior change in homeowners.
- Lab and field testing are needed to validate and confirm the accuracy of these devices, particularly their ability to differentiate and measure loads in a real-world environment.

We empower consumers to lower their energy bill through greater insights into energy consumption and real-time feedback

Smart Grid Technology

- Smart Grid and demand response technologies that have been/are being evaluated in the PNNL Lab Homes:
 - GE Nucleus and suite of smart-enabled appliances
 - PNNL-developed VOLTTRON[™] universal Smart Grid controller
- Interaction between demand response or "smart" features and energy efficiency not well understood in practice.

For example:

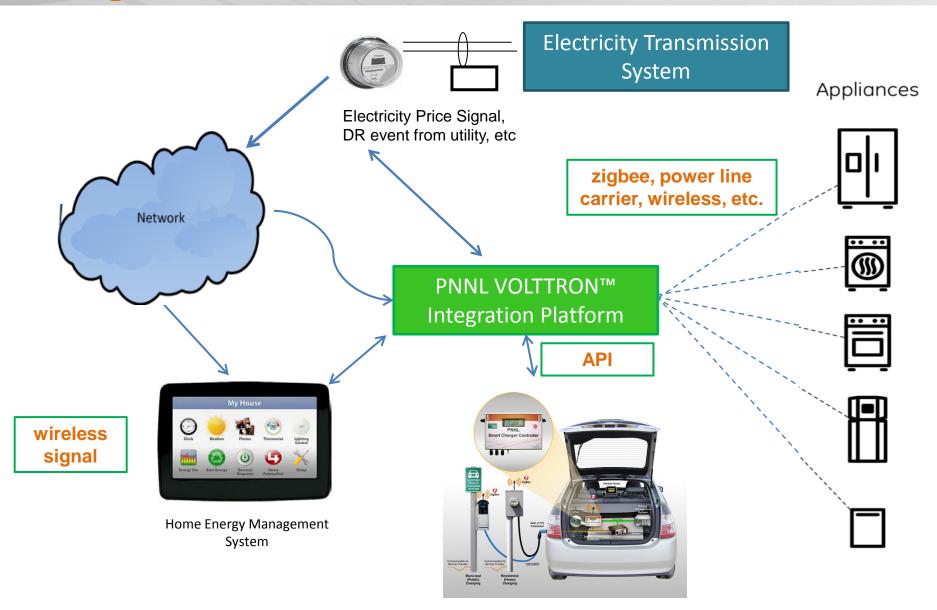
- HPWH ability to perform demand response.
- Home energy management systems that typically focus on utility control (demand response = DR) or homeowner control (energy efficiency = EE), but not both.
- Understanding impact of DR on EE and EE on DR can help maximize value proposition for both homeowners and utilities.

GE Smart Appliance Approach

GE's Home Management System, Featuring Nucleus with GE **ProfileTM Series Appliances with Brillion Technology** 0 "Dumb Meter" CT transmitter **User Interfaces** Internet Wireless router **GE Home Energy** (802.11.b/g) Gateway Electricity **Price Signal**

Load Scheduling

Problem:


- High-energy residential and commercial loads often synchronize, leading to peak energy demand.
- Plug-in hybrid cars may introduce a synchronized load due to similar consumer behavior. Consider a neighborhood where individuals return from work between 5pm and 6pm and plug-in hybrid cars for charging.
- Value to utilities is tremendous. Translating value to consumers is less apparent.

Concept:

- Utilize mobile agents to communicate load behavior and develop a scheduled sharing of energy. The scheduled consumption both reduces peak energy demand and provides forecasting information. Three potential strategies to achieve load goal
 - Global price signal
 - Individual price signal
 - Cooperative

PNNL's Volttron Smart-Grid Integration Platform

Future Research Agenda

- FY14 planned research will evaluate grid-smart appliances & smart electric vehicle charging stations; CO₂-driven heat pump water heaters (EE & DR).
- Future potential research may include efficient enclosures, innovative HVAC technologies, and solar-thermal/PV.
- What can we evaluate in the Lab Homes that would help your programs?

The "multiple (5) outdoor refrigerator" experiment

For more info....

- Visit our website:
 http://labhomes.pnnl.gov/
- Email us:labhomes@pnnl.gov

- Contact the research team:
 - Sarah Widder <u>sarah.widder@pnnl.gov</u>; 509-372-6396
 - Graham Parker graham.parker@pnnl.gov; (509) 375-3805
 - Joe Petersen
 - Greg Sullivan, Efficiency Solutions
 - Jake Knox
 - Nathan Bauman
 - Vrushali Mendon
 - Marye Hefty

Proudly Operated by Battelle Since 1965

Thank You!

Questions?

Proudly Operated by Battelle Since 1965

What Should the PNNL Lab Homes Evaluate Next?

Proudly Operated by Battelle Since 1965

Back Up Slides

Thermal Experiments

#1:

#2:

#3:

Experiment Lab Home A Lab Home B **Purpose of Experiment** Configuration Configuration Characterize performance and 50-gallon 50-gallon GE HP vs. FR electric Hybrid HPWH interaction with HVAC for HPWH as resistance* compared to ER baseline 50-gallon GE 50-gallon GE Characterize performance of ducted HPWH vs. identical unducted HPWH to Ducted vs. Hybrid HPWH Hybrid HPWH with no with exhaust Unducted isolate the impact of ducting on wholeducting ducting house and HVAC energy consumption, thermal comfort, and HPWH performance 50-gallon GE 50-gallon GE Characterize interaction of HPWH on Hybrid HPWH **Fully Ducted** Hybrid HPWH infiltration and house pressurization for vs. Unducted with no with supply fully ducted and unducted scenarios and ducting ducting (from impact using tempered crawlspace air as crawl) and supply air exhaust

* Electric resistance baseline will be GE Hybrid HPWH in ER only mode.

ducting

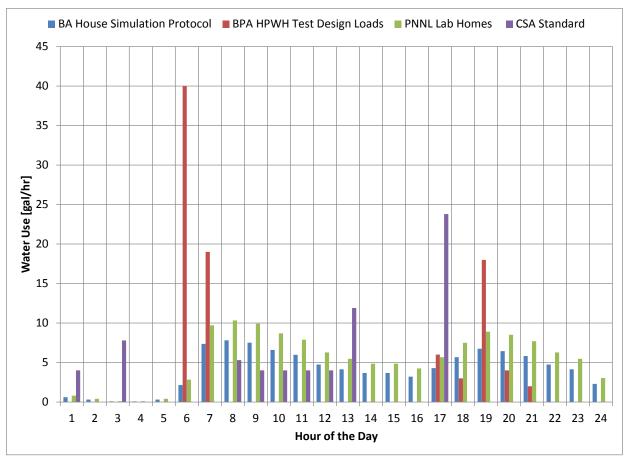
Demand Response Experiments

Evaluate demand response characteristics of this smart-grid-enabled HPWH compared to electric resistance baseline during variety of demand response events:

Exp Name	Experiment Description	Time	Duration	Purpose of Experiment
AM Load Shift	Turn off heating elements	7:00 AM	3 hours	Evaluate HPWH load shedding potential (dispatchable kW and thermal capacity) as compared to electric resistance baseline to manage peak load
PM Load Shift	Turn off heating elements	2:00 PM	3 hours	Evaluate HPWH load shedding potential (dispatchable kW and thermal capacity) as compared to electric resistance baseline to manage peak load
EVE Load Shift	Turn off heating elements	6:00 PM	3 hours	Evaluate HPWH load shedding potential (dispatchable kW and thermal capacity) as compared to electric resistance baseline to manage peak load
INC Balancing	Turn off heating elements	2:00 AM; 8:00 AM; 2:00 PM; 8:00 PM	30 minutes	Evaluate HPWH potential to provide balancing reserves for (dispatchable kW and thermal capacity) as compared to electric resistance baseline
DEC Balancing	Set tank temp to 135 F	2:00 AM	30 minutes	
DEC Balancing V2	Turn on ER in Lab Home A; HP only in Lab Home B	2:00 AM	30 minutes	N/A; HPWHs should stay in appropriate mode throughout test (Lab Home A = ER; Lab Home B = HP)

- Power, water flow, and temperature data are provided for each DR related tests, including: baseline, peak curtailments; INC balancing events, and DEC balancing events.
- A data file, in csv (comma separated value) format, with 1-minute data for the following variables is available at <u>labhomes.pnnl.gov</u> for other researchers or interested parties to perform their own additional analysis:
 - Total electric real power to each water heater (kW), 1 minute average.
 - Total electric apparent power to each water heater (kVA), 1 minute average.
 - Hot water flow rate out of the water heater (gallons per minute), 1 minute average.
 - Temperature of the cold water supply into the water heaters (°F), 1 minute average.
 - Temperature of the water at the outlet of the water heaters (°F), 1 minute average.

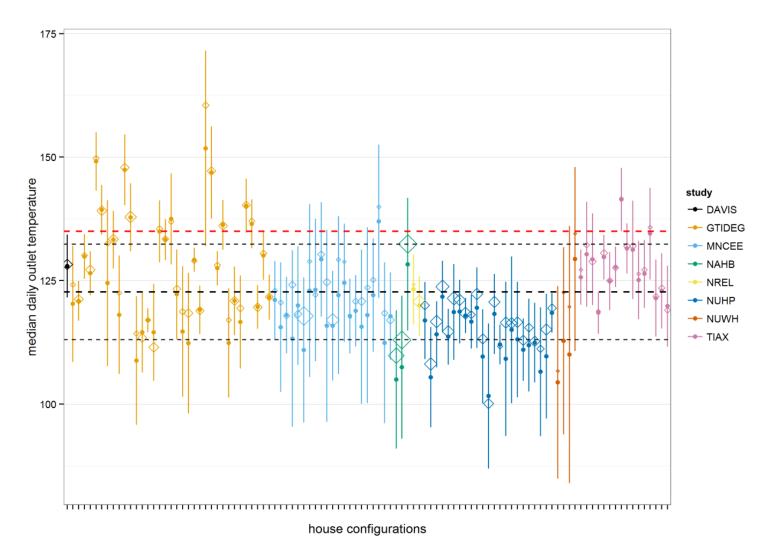
Hot Water Draw Profile

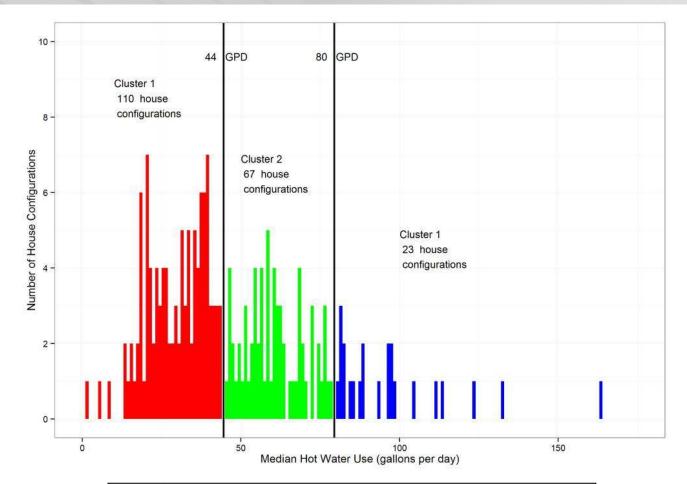


Proudly Operated by Battelle Since 1965

LBNL Meta-analysis¹ of 159 homes found:

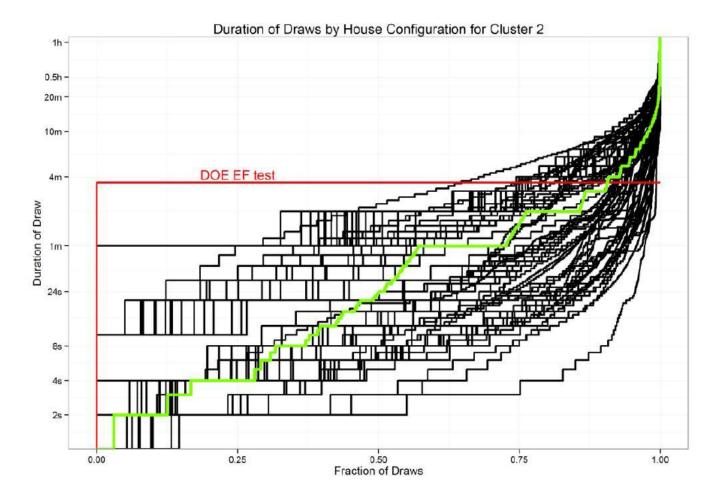
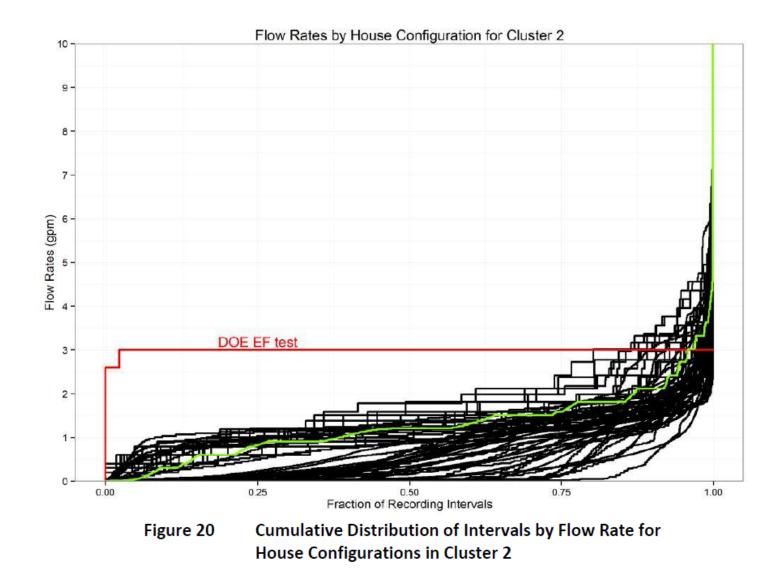
- 122.7 F average tank set point
- Majority of draws between 1 and 1.5 gpm
- Majority of draws between 1 and 4 minutes in length
- "High," "medium," and "low" daily water draws of 29.38, 60.52, 98.04 gal/day

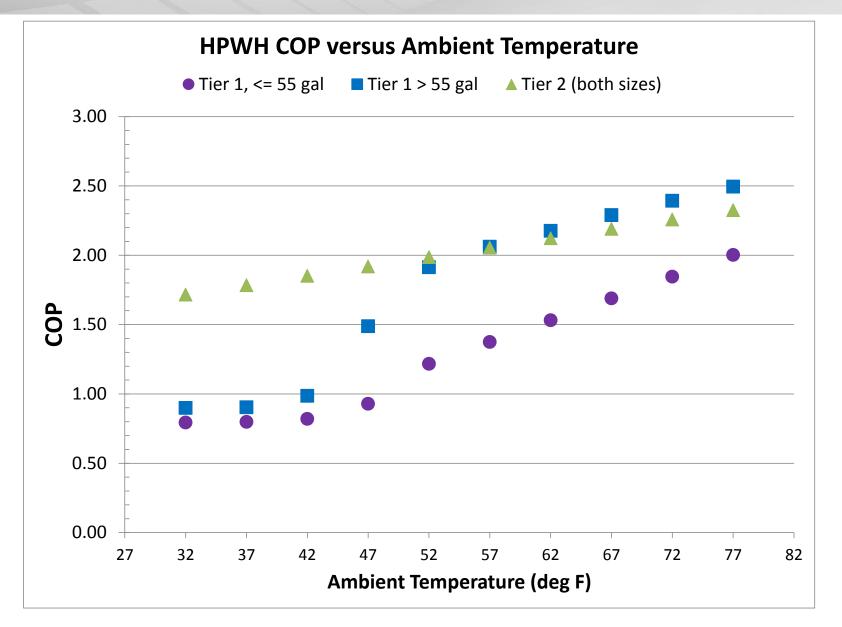

¹ Lutz and Melody; 2012


Profile	Daily Hot Water Use [gal/day]
Building America House Simulation Protocol	97 (6 people)
BPA Evaluation	90 (4 people)
Canadian Test Standard	68.8 ("high usage")
PNNL Lab Homes	130

	House	Mediar	Average		
Cluster	Configurations	Minimum	Average	Maximum	Daily Draws
1	110	1.52	29.38	43.23	45.22
2	67	45.25	60.52	78.66	66.48
3	23	80.74	98.04	163.21	86.37

Proudly Operated by Battelle Since 1965


Figure 14 Cumulative Distribution of Draws by Duration for House Configurations in Cluster 2

Prior Lab Testing (Ecotope, 2011)

RTF Overall Savings Estimates

- Impact on house heating + cooling system depends on climate, exhaust airflow, and HVAC system type
- Combining DHW energy savings with heating + cooling impact produces the overall energy savings estimate
- 5 scenarios in 4 climates considered on next slide:
 - Interior non-ducted (0 cfm flow to outside)
 - 4 levels of exhaust ducting to outside
 - 150, 200, 250, and 300 cfm

Heating System Interaction

- CFM is airflow ducted to outside ("0" corresponds to no ducting)
- Negative values are a heating system debit

Zonal Resistance Heat (kWh/yr)					
CFM	PNW	HZ1	HZ2	HZ3	
300	-1283	-1252	-1514	-1764	
250	-1029	-1003	-1222	-1431	
200	-839	-817	-1006	-1184	
150	-664	-646	-799	-943	
0	-1415	-1415	-1479	-1597	

Electric Resistance Furnace (kWh/yr)						
CFM	PNW	HZ1	HZ2	HZ3		
300	-1464	-1428	-1741	-2036		
250	-1173	-1143	-1399	-1641		
200	-953	-927	-1146	-1349		
150	-751	-730	-906	-1072		
0	-1608	-1606	-1688	-1830		

Heat Pump HSPF 8.5 (kWh/yr)					
CFM	PNW	HZ1	HZ2	HZ3	
300	-790	-731	-1142	-1542	
250	-617	-572	-888	-1195	
200	-491	-454	-701	-961	
150	-379	-351	-539	-741	
0	-609	-590	-731	-892	

Gas Furnace AFUE 90 (therms/yr)						
CFM	PNW	HZ1	HZ2	HZ3		
300	-68	-66	-83	-98		
250	-54	-53	-66	-78		
200	-46	-44	-56	-67		
150	-35	-33	-42	-51		
0	-62	-62	-64	-68		

Cooling System Interaction

- None for houses without cooling system (Zonal Resistance and Electric Furnace)
- Cooling savings for ducted installations nearly negligible but not so for nonducted ones

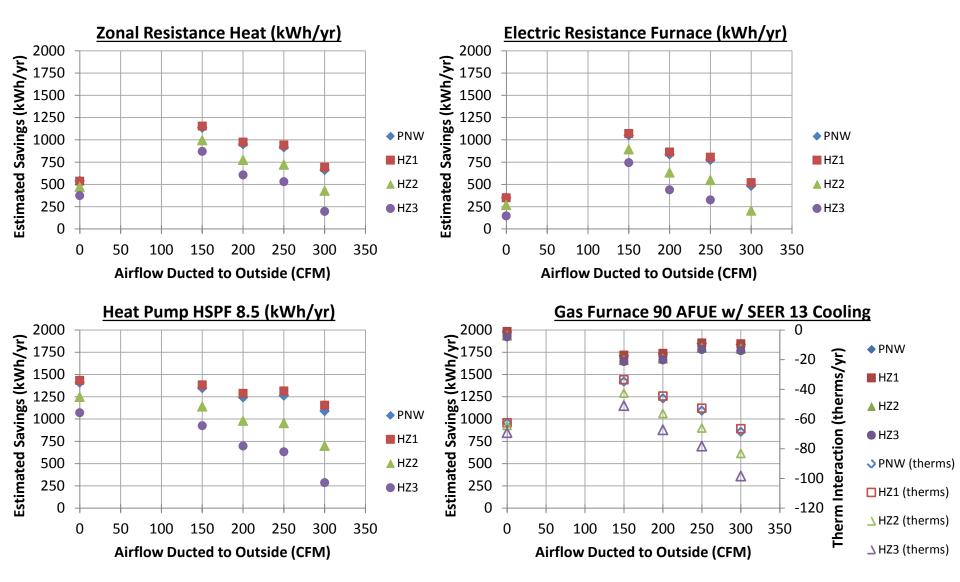
Heat Pump SEER 13 (kWh/yr)					
CFM	PNW	HZ1	HZ2	HZ3	
300	20	20	20	20	
250	18	18	18	18	
200	17	17	17	17	
150	16	16	16	16	
0	153	153	153	153	

Gas Furnace w A/C: SEER 13 (kWh/yr)					
CFM	PNW	HZ1	HZ2	HZ3	
300	19	19	19	19	
250	18	18	18	18	
200	17	17	17	17	
150	16	16	16	16	
0	152	152	152	152	

- CFM is airflow ducted to outside ("0" corresponds to no ducting)
- Positive values are a cooling system benefit

Analysis Outputs: Combined Savings Tables

Zonal Resistance Heat (kWh/yr)					
CFM	PNW	HZ1	HZ2	HZ3	
300	662	692	428	197	
250	917	942	722	531	
200	994	1016	825	666	
150	1145	1163	1009	884	
0	538	537	474	374	


Electr	Electric Resistance Furnace (kWh/yr)					
CFM	PNW	HZ1	HZ2	HZ3		
300	484	520	206	-70		
250	776	806	549	327		
200	884	909	690	506		
150	1063	1083	907	761		
0	349	350	270	147		

Не	Heat Pump HSPF 8.5 (kWh/yr)					
CFM	PNW	HZ1	HZ2	HZ3		
300	1090	1155	698	284		
250	1263	1314	952	632		
200	1267	1311	1014	744		
150	1352	1387	1149	935		
0	1407	1433	1248	1071		

Gas Furnace AFUE 90 (kWh/yr)									
CFM	PNW	HZ1	HZ2	HZ3					
300	1829	1837	1778	1756					
250	1839	1847	1791	1771					
200	1726	1734	1675	1657					
150	1706	1714	1656	1640					
0	1970	1976	1930	1914					

PNW Modeling: DHW Savings with Combined Interaction

BPA Demand Response Product Characteristics

Proudly Operated by Battelle Since 1965

Product details

	DR Product 1	DR Product 2	DR Product 3	DR Product 4			
	Within-hour load decrease for non-	Within-hour load increase for non-	Heavy load hour to light load hour shift	Load decrease for capacity/peak shifting			
	spinning balancing reserves (INC)	spinning balancing reserves (DEC)	for oversupply	with BPA and utility dispatch			
Primary Use	Additional balancing reserves for wind	Additional balancing reserves for wind	Oversupply mitigation	Transmission and distribution congestion			
	integration	integration		management and deferrals, utility peak			
				avoidance			
Dispatched By	BPA	BPA	BPA	Contractually separate dispatch by BPA			
				and participating utility			
Expected Beneficiaries	Variable energy resources (VERs)	Variable energy resources (VERs)	Variable energy resources (VERs)	BPA Transmission, participating utility			
Dispatch Period	10 minutes	10 minutes	60 minutes	Within-hour (BPA)			
				Day-ahead (utility)			
Seasonality	Year-round	Year-round	March - July	Year-round			
Couconding			indicit bary				
Duration	Up to 90 minutes	Up to 90 minutes	Up to 6 hours	Up to 4 hours			
Duration	Op to 50 minutes	op to so minutes					
	200	100	100	200			
Maximum Hours Annual Usage	300	180	480	300			
Expected Cost FY13-15	\$6-7 kW/month	\$1-3 kW/month	\$4-5 kW/month	\$4-5 kW/month			
		(as add-on to DR Product 1)					
Expected Cost at Scale	\$3-5 kW/month	TBD - no current full-scale programs	TBD - no current full-scale programs	\$3-5 kW/month			
Current Comparative Cost	VERBS rate (FBS-based):	VERBS rate (FBS-based):	OMP cost estimate:	Demand charge for LF customers:			
·	\$7.68 kW/month	\$2.07 kW/month	\$40-50 MW/hour	\$9.62 kW/month			
Future Comparative Cost	Combustion gas turbine:	TBD - no current market-ready	TBD - no current market-ready	Combustion gas turbine:			
	\$17.63 kW/month	alternative	alternative	\$17.63 kW/month			
Estimated expected BPA Benefit	100%	100%	TBD - based on project-specific	TBD - based on project-specific			
Estimated expected BFA beliefit	100 %	100 /0	expected benefits analysis	expected benefits analysis			
	20/			, ,			
Estimated expected Utility Benefit	0%	0%	TBD - based on project-specific	TBD - based on project-specific			
			expected benefits analysis	expected benefits analysis			

Notes:

- · Cost estimates based on benchmarking and market research with DR providers
- Initial cost allocation estimates based on assessment of each product by DR Cost Allocation Team comprised of Power and Transmission Rates staff
- Actual cost allocation for each project will be determined by analyzing its expected benefits; if expected benefits are not clear upfront, costs will be
 allocated based on principles determined by the IRTP Cost Allocation Team and approved by the ASF

Schedule Table

Task Description Task Alias Subtask Alias Start Finish Days Project Management Plan (PMP) **PMP** 12/1/2012 1/4/2013 34 1 Modify Lab Homes and Install Equipment 2 **Baseline** Install 1/4/2013 2/24/2013 51 A 2 В **Baseline Testing Baseline** 3/12/2013 2/24/2013 16 3 B **Baseline Testing** Baseline 3/31/2013 4/20/2013 20 3 Heating Season Exp #1 (ER v. HPWH) Heating Exp. 11/1/2013 11/9/2013 8 A Exp #1 3 В Heating Season Exp #2 (Exhaust Duct) Exp #2 11/9/2013 11/30/2013 21 4 Heating Season Exp #3 (Supply&Exhaust) Exp #3 11/30/2013 12/21/2013 21 5 **Demand Response** DR **Demand Response** 5/1/2013 5/31/2013 30 Cooling Season Exp #1 (ER v. HPWH) Cooling Exp. Exp #1 6/1/2013 6/20/2013 19 6 Α В 6/21/2013 18 6 Cooling Season Exp #2 (Exhaust Duct) Exp #2 7/9/2013 20 7 Α Cooling Season Exp #3 (Supply&Exhaust) Exp #3 7/10/2013 7/30/2013 7 B Sensitivity Experiments Additional Exp 9/1/2013 10/31/2013 60 8 **Final Report Final Report** Dev. Approach 12/21/2013 1/31/2014 41 9 **TI Council Meeting Presentation TI Council Mtg** 17 1/14/2014 1/31/2014

HPWH DR Testing Schedule

Proudly Operated by Battelle Since 1965

PNNL HPWH DR Testing Schedule

Day		•	Signal 1	Time	Duration	Signal 2	Time	Duration	Signal 3	Time	Duration	Signal 4	Time	Duration	Mode to Return to after event(s)	
1	TBD	Shift	Turn off heating elements	7:00 AM	3 hours	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Lab Home A = ER; Lab Home B = HP	
2	TBD	Shift	Turn off heating elements	7:00 AM	3 hours	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Lab Home A = ER; Lab Home B = HP	
3	TBD	Shift	Turn off heating elements	7:00 AM	3 hours	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Lab Home A = ER; Lab Home B = HP	
4	твр	Shift	Turn off heating elements	2:00 PM	3 hours	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Lab Home A = ER; Lab Home B = HP	
5	TBD	Shift	Turn off heating elements	2:00 PM	3 hours	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Lab Home A = ER; Lab Home B = HP	
6	TBD	Shift	Turn off heating elements	2:00 PM		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Lab Home A = ER; Lab Home B = HP	
7	TBD	Shift	Turn off heating elements	6:00 PM	3 hours	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Lab Home A = ER; Lab Home B = HP	
8			Turn off heating elements	6:00 PM	3 hours	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Lab Home A = ER; Lab Home B = HP	
9	IRD	Shift	Turn off heating elements	6:00 PM		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Lab Home A = ER; Lab Home B = HP	
10	TBD	INC	Turn off heating	2:00	30	Turn off heating	8:00	30	Turn off heating	2:00	30	Turn off heating	8:00	30	Lab Home A = ER; Lab Home B	
10		Balancing	elements			elements		minutes	elements		minutes	elements		minutes	= HP	
11	I TRN I		Turn off heating	2:00		Turn off heating	8:00		Turn off heating	2:00		Turn off heating	8:00		Lab Home A = ER; Lab Home B	
		Balancing	elements			elements		minutes	elements		minutes	elements		minutes		
12 TBD	I TRD I		Turn off heating	2:00		Turn off heating	8:00		Turn off heating	2:00		Turn off heating	8:00		Lab Home A = ER; Lab Home B	
		Balancing	elements			elements		minutes	elements		minutes	elements			= HP	
13	I TRN I	DEC Balancing	Set tank temp to 135	2:00		Turn off heating elements	8:00	30 minutes	Turn off heating elements	2:00	30 minutes	Turn off heating elements	8:00		N/A; HPWHs should stay in	
			F Set tank temp to 135	2:00		elements Turn off heating	8:00		elements Turn off heating	2:00		Turn off heating	8:00		N/A; HPWHS should stay in appropraite mode	
14		Balancing	F			elements			elements		minutes	elements			throughout test (Lab Home A	
			Set tank temp to 135	2:00		Turn off heating	8:00		Turn off heating	2:00		Turn off heating	8:00		= ER; Lab Home B = HP)	
15	I TRN I	Balancing	F			elements		minutes	elements		minutes	elements		minutes	$=$ $\ln f$ the moment h $=$ $\ln f$	
16	TBD	DEC Balancing V2	Turn on ER in Lab Home A; HP only in Lab Home B	2:00		Turn off heating elements	8:00		Turn off heating elements	2:00		Turn off heating elements	8:00		N/A: HPWHs should stay in	
17	TBD	Balancing V2	Turn on ER in Lab Home A; HP only in Lab Home B	2:00 AM		Turn off heating elements	8:00 AM	30 minutes	Turn off heating elements	2:00 PM	30 minutes	Turn off heating elements	8:00 PM		appropraite mode throughout test (Lab Home A = ER; Lab Home B = HP)	
18		Balancing	Turn on ER in Lab Home A; HP only in Lab Home B	2:00 AM	30 minutes	Turn off heating elements	8:00 AM	30 minutes	Turn off heating elements	2:00 PM	30 minutes	Turn off heating elements	8:00 PM	30 minutes	- LN, LAD HUILE D - HP)	
	<u> </u>	* -										I		L		